| Step | Hyp | Ref | Expression | 
						
							| 1 |  | taylth.f |  |-  ( ph -> F : A --> RR ) | 
						
							| 2 |  | taylth.a |  |-  ( ph -> A C_ RR ) | 
						
							| 3 |  | taylth.d |  |-  ( ph -> dom ( ( RR Dn F ) ` N ) = A ) | 
						
							| 4 |  | taylth.n |  |-  ( ph -> N e. NN ) | 
						
							| 5 |  | taylth.b |  |-  ( ph -> B e. A ) | 
						
							| 6 |  | taylth.t |  |-  T = ( N ( RR Tayl F ) B ) | 
						
							| 7 |  | taylthlem2.m |  |-  ( ph -> M e. ( 1 ..^ N ) ) | 
						
							| 8 |  | taylthlem2.i |  |-  ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ) limCC B ) ) | 
						
							| 9 |  | fz1ssfz0 |  |-  ( 1 ... N ) C_ ( 0 ... N ) | 
						
							| 10 |  | fzofzp1 |  |-  ( M e. ( 1 ..^ N ) -> ( M + 1 ) e. ( 1 ... N ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( ph -> ( M + 1 ) e. ( 1 ... N ) ) | 
						
							| 12 | 9 11 | sselid |  |-  ( ph -> ( M + 1 ) e. ( 0 ... N ) ) | 
						
							| 13 |  | fznn0sub2 |  |-  ( ( M + 1 ) e. ( 0 ... N ) -> ( N - ( M + 1 ) ) e. ( 0 ... N ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> ( N - ( M + 1 ) ) e. ( 0 ... N ) ) | 
						
							| 15 |  | elfznn0 |  |-  ( ( N - ( M + 1 ) ) e. ( 0 ... N ) -> ( N - ( M + 1 ) ) e. NN0 ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> ( N - ( M + 1 ) ) e. NN0 ) | 
						
							| 17 |  | dvnfre |  |-  ( ( F : A --> RR /\ A C_ RR /\ ( N - ( M + 1 ) ) e. NN0 ) -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) --> RR ) | 
						
							| 18 | 1 2 16 17 | syl3anc |  |-  ( ph -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) --> RR ) | 
						
							| 19 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 20 | 19 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 21 |  | cnex |  |-  CC e. _V | 
						
							| 22 | 21 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 23 |  | reex |  |-  RR e. _V | 
						
							| 24 | 23 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 25 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 26 |  | fss |  |-  ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) | 
						
							| 27 | 1 25 26 | sylancl |  |-  ( ph -> F : A --> CC ) | 
						
							| 28 |  | elpm2r |  |-  ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : A --> CC /\ A C_ RR ) ) -> F e. ( CC ^pm RR ) ) | 
						
							| 29 | 22 24 27 2 28 | syl22anc |  |-  ( ph -> F e. ( CC ^pm RR ) ) | 
						
							| 30 |  | dvnbss |  |-  ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ ( N - ( M + 1 ) ) e. NN0 ) -> dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) C_ dom F ) | 
						
							| 31 | 20 29 16 30 | syl3anc |  |-  ( ph -> dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) C_ dom F ) | 
						
							| 32 | 1 31 | fssdmd |  |-  ( ph -> dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) C_ A ) | 
						
							| 33 |  | dvn2bss |  |-  ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ ( N - ( M + 1 ) ) e. ( 0 ... N ) ) -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) | 
						
							| 34 | 20 29 14 33 | syl3anc |  |-  ( ph -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) | 
						
							| 35 | 3 34 | eqsstrrd |  |-  ( ph -> A C_ dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) | 
						
							| 36 | 32 35 | eqssd |  |-  ( ph -> dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) = A ) | 
						
							| 37 | 36 | feq2d |  |-  ( ph -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : dom ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) --> RR <-> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> RR ) ) | 
						
							| 38 | 18 37 | mpbid |  |-  ( ph -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> RR ) | 
						
							| 39 | 38 | ffvelcdmda |  |-  ( ( ph /\ y e. A ) -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) e. RR ) | 
						
							| 40 | 2 | sselda |  |-  ( ( ph /\ y e. A ) -> y e. RR ) | 
						
							| 41 |  | fvres |  |-  ( y e. RR -> ( ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) |` RR ) ` y ) = ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ph /\ y e. RR ) -> ( ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) |` RR ) ` y ) = ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) | 
						
							| 43 |  | resubdrg |  |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) | 
						
							| 44 | 43 | simpli |  |-  RR e. ( SubRing ` CCfld ) | 
						
							| 45 | 44 | a1i |  |-  ( ph -> RR e. ( SubRing ` CCfld ) ) | 
						
							| 46 | 4 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 47 | 5 3 | eleqtrrd |  |-  ( ph -> B e. dom ( ( RR Dn F ) ` N ) ) | 
						
							| 48 | 2 5 | sseldd |  |-  ( ph -> B e. RR ) | 
						
							| 49 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 50 |  | dvnfre |  |-  ( ( F : A --> RR /\ A C_ RR /\ k e. NN0 ) -> ( ( RR Dn F ) ` k ) : dom ( ( RR Dn F ) ` k ) --> RR ) | 
						
							| 51 | 1 2 49 50 | syl2an3an |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( RR Dn F ) ` k ) : dom ( ( RR Dn F ) ` k ) --> RR ) | 
						
							| 52 |  | simpr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. ( 0 ... N ) ) | 
						
							| 53 |  | dvn2bss |  |-  ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ k e. ( 0 ... N ) ) -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` k ) ) | 
						
							| 54 | 19 29 52 53 | mp3an2ani |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` k ) ) | 
						
							| 55 | 47 | adantr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( RR Dn F ) ` N ) ) | 
						
							| 56 | 54 55 | sseldd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> B e. dom ( ( RR Dn F ) ` k ) ) | 
						
							| 57 | 51 56 | ffvelcdmd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( RR Dn F ) ` k ) ` B ) e. RR ) | 
						
							| 58 | 49 | adantl |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. NN0 ) | 
						
							| 59 | 58 | faccld |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. NN ) | 
						
							| 60 | 57 59 | nndivred |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( ( RR Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. RR ) | 
						
							| 61 | 20 27 2 46 47 6 45 48 60 | taylply2 |  |-  ( ph -> ( T e. ( Poly ` RR ) /\ ( deg ` T ) <_ N ) ) | 
						
							| 62 | 61 | simpld |  |-  ( ph -> T e. ( Poly ` RR ) ) | 
						
							| 63 |  | dvnply2 |  |-  ( ( RR e. ( SubRing ` CCfld ) /\ T e. ( Poly ` RR ) /\ ( N - ( M + 1 ) ) e. NN0 ) -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( Poly ` RR ) ) | 
						
							| 64 | 45 62 16 63 | syl3anc |  |-  ( ph -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( Poly ` RR ) ) | 
						
							| 65 |  | plyreres |  |-  ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( Poly ` RR ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) |` RR ) : RR --> RR ) | 
						
							| 66 | 64 65 | syl |  |-  ( ph -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) |` RR ) : RR --> RR ) | 
						
							| 67 | 66 | ffvelcdmda |  |-  ( ( ph /\ y e. RR ) -> ( ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) |` RR ) ` y ) e. RR ) | 
						
							| 68 | 42 67 | eqeltrrd |  |-  ( ( ph /\ y e. RR ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) e. RR ) | 
						
							| 69 | 40 68 | syldan |  |-  ( ( ph /\ y e. A ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) e. RR ) | 
						
							| 70 | 39 69 | resubcld |  |-  ( ( ph /\ y e. A ) -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) e. RR ) | 
						
							| 71 | 70 | fmpttd |  |-  ( ph -> ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) : A --> RR ) | 
						
							| 72 | 48 | adantr |  |-  ( ( ph /\ y e. A ) -> B e. RR ) | 
						
							| 73 | 40 72 | resubcld |  |-  ( ( ph /\ y e. A ) -> ( y - B ) e. RR ) | 
						
							| 74 |  | elfzouz |  |-  ( M e. ( 1 ..^ N ) -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 75 | 7 74 | syl |  |-  ( ph -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 76 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 77 | 75 76 | eleqtrrdi |  |-  ( ph -> M e. NN ) | 
						
							| 78 | 77 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ph /\ y e. A ) -> M e. NN0 ) | 
						
							| 80 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 81 | 80 | a1i |  |-  ( ( ph /\ y e. A ) -> 1 e. NN0 ) | 
						
							| 82 | 79 81 | nn0addcld |  |-  ( ( ph /\ y e. A ) -> ( M + 1 ) e. NN0 ) | 
						
							| 83 | 73 82 | reexpcld |  |-  ( ( ph /\ y e. A ) -> ( ( y - B ) ^ ( M + 1 ) ) e. RR ) | 
						
							| 84 | 83 | fmpttd |  |-  ( ph -> ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) : A --> RR ) | 
						
							| 85 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 86 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 87 | 86 | ntrss2 |  |-  ( ( ( topGen ` ran (,) ) e. Top /\ A C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) C_ A ) | 
						
							| 88 | 85 2 87 | sylancr |  |-  ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) C_ A ) | 
						
							| 89 | 4 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 90 | 77 | nncnd |  |-  ( ph -> M e. CC ) | 
						
							| 91 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 92 | 89 90 91 | nppcan2d |  |-  ( ph -> ( ( N - ( M + 1 ) ) + 1 ) = ( N - M ) ) | 
						
							| 93 | 92 | fveq2d |  |-  ( ph -> ( ( RR Dn F ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( ( RR Dn F ) ` ( N - M ) ) ) | 
						
							| 94 | 25 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 95 |  | dvnp1 |  |-  ( ( RR C_ CC /\ F e. ( CC ^pm RR ) /\ ( N - ( M + 1 ) ) e. NN0 ) -> ( ( RR Dn F ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) ) | 
						
							| 96 | 94 29 16 95 | syl3anc |  |-  ( ph -> ( ( RR Dn F ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) ) | 
						
							| 97 | 93 96 | eqtr3d |  |-  ( ph -> ( ( RR Dn F ) ` ( N - M ) ) = ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) ) | 
						
							| 98 | 97 | dmeqd |  |-  ( ph -> dom ( ( RR Dn F ) ` ( N - M ) ) = dom ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) ) | 
						
							| 99 |  | fzonnsub |  |-  ( M e. ( 1 ..^ N ) -> ( N - M ) e. NN ) | 
						
							| 100 | 7 99 | syl |  |-  ( ph -> ( N - M ) e. NN ) | 
						
							| 101 | 100 | nnnn0d |  |-  ( ph -> ( N - M ) e. NN0 ) | 
						
							| 102 |  | dvnbss |  |-  ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ ( N - M ) e. NN0 ) -> dom ( ( RR Dn F ) ` ( N - M ) ) C_ dom F ) | 
						
							| 103 | 20 29 101 102 | syl3anc |  |-  ( ph -> dom ( ( RR Dn F ) ` ( N - M ) ) C_ dom F ) | 
						
							| 104 | 1 103 | fssdmd |  |-  ( ph -> dom ( ( RR Dn F ) ` ( N - M ) ) C_ A ) | 
						
							| 105 |  | elfzofz |  |-  ( M e. ( 1 ..^ N ) -> M e. ( 1 ... N ) ) | 
						
							| 106 | 7 105 | syl |  |-  ( ph -> M e. ( 1 ... N ) ) | 
						
							| 107 | 9 106 | sselid |  |-  ( ph -> M e. ( 0 ... N ) ) | 
						
							| 108 |  | fznn0sub2 |  |-  ( M e. ( 0 ... N ) -> ( N - M ) e. ( 0 ... N ) ) | 
						
							| 109 | 107 108 | syl |  |-  ( ph -> ( N - M ) e. ( 0 ... N ) ) | 
						
							| 110 |  | dvn2bss |  |-  ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ ( N - M ) e. ( 0 ... N ) ) -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` ( N - M ) ) ) | 
						
							| 111 | 20 29 109 110 | syl3anc |  |-  ( ph -> dom ( ( RR Dn F ) ` N ) C_ dom ( ( RR Dn F ) ` ( N - M ) ) ) | 
						
							| 112 | 3 111 | eqsstrrd |  |-  ( ph -> A C_ dom ( ( RR Dn F ) ` ( N - M ) ) ) | 
						
							| 113 | 104 112 | eqssd |  |-  ( ph -> dom ( ( RR Dn F ) ` ( N - M ) ) = A ) | 
						
							| 114 | 98 113 | eqtr3d |  |-  ( ph -> dom ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) = A ) | 
						
							| 115 |  | fss |  |-  ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> RR /\ RR C_ CC ) -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> CC ) | 
						
							| 116 | 38 25 115 | sylancl |  |-  ( ph -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> CC ) | 
						
							| 117 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 118 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 119 | 94 116 2 117 118 | dvbssntr |  |-  ( ph -> dom ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` A ) ) | 
						
							| 120 | 114 119 | eqsstrrd |  |-  ( ph -> A C_ ( ( int ` ( topGen ` ran (,) ) ) ` A ) ) | 
						
							| 121 | 88 120 | eqssd |  |-  ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` A ) = A ) | 
						
							| 122 | 86 | isopn3 |  |-  ( ( ( topGen ` ran (,) ) e. Top /\ A C_ RR ) -> ( A e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` A ) = A ) ) | 
						
							| 123 | 85 2 122 | sylancr |  |-  ( ph -> ( A e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` A ) = A ) ) | 
						
							| 124 | 121 123 | mpbird |  |-  ( ph -> A e. ( topGen ` ran (,) ) ) | 
						
							| 125 |  | eqid |  |-  ( A \ { B } ) = ( A \ { B } ) | 
						
							| 126 |  | difss |  |-  ( A \ { B } ) C_ A | 
						
							| 127 | 39 | recnd |  |-  ( ( ph /\ y e. A ) -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) e. CC ) | 
						
							| 128 |  | dvnf |  |-  ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ ( N - M ) e. NN0 ) -> ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> CC ) | 
						
							| 129 | 20 29 101 128 | syl3anc |  |-  ( ph -> ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> CC ) | 
						
							| 130 | 113 | feq2d |  |-  ( ph -> ( ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> CC <-> ( ( RR Dn F ) ` ( N - M ) ) : A --> CC ) ) | 
						
							| 131 | 129 130 | mpbid |  |-  ( ph -> ( ( RR Dn F ) ` ( N - M ) ) : A --> CC ) | 
						
							| 132 | 131 | ffvelcdmda |  |-  ( ( ph /\ y e. A ) -> ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) e. CC ) | 
						
							| 133 |  | dvnfre |  |-  ( ( F : A --> RR /\ A C_ RR /\ ( N - M ) e. NN0 ) -> ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> RR ) | 
						
							| 134 | 1 2 101 133 | syl3anc |  |-  ( ph -> ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> RR ) | 
						
							| 135 | 113 | feq2d |  |-  ( ph -> ( ( ( RR Dn F ) ` ( N - M ) ) : dom ( ( RR Dn F ) ` ( N - M ) ) --> RR <-> ( ( RR Dn F ) ` ( N - M ) ) : A --> RR ) ) | 
						
							| 136 | 134 135 | mpbid |  |-  ( ph -> ( ( RR Dn F ) ` ( N - M ) ) : A --> RR ) | 
						
							| 137 | 136 | feqmptd |  |-  ( ph -> ( ( RR Dn F ) ` ( N - M ) ) = ( y e. A |-> ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) ) ) | 
						
							| 138 | 38 | feqmptd |  |-  ( ph -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) = ( y e. A |-> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) | 
						
							| 139 | 138 | oveq2d |  |-  ( ph -> ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) = ( RR _D ( y e. A |-> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) | 
						
							| 140 | 97 137 139 | 3eqtr3rd |  |-  ( ph -> ( RR _D ( y e. A |-> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) = ( y e. A |-> ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) ) ) | 
						
							| 141 | 69 | recnd |  |-  ( ( ph /\ y e. A ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) e. CC ) | 
						
							| 142 |  | fvexd |  |-  ( ( ph /\ y e. A ) -> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) e. _V ) | 
						
							| 143 | 68 | recnd |  |-  ( ( ph /\ y e. RR ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) e. CC ) | 
						
							| 144 |  | recn |  |-  ( y e. RR -> y e. CC ) | 
						
							| 145 |  | dvnply2 |  |-  ( ( RR e. ( SubRing ` CCfld ) /\ T e. ( Poly ` RR ) /\ ( N - M ) e. NN0 ) -> ( ( CC Dn T ) ` ( N - M ) ) e. ( Poly ` RR ) ) | 
						
							| 146 | 45 62 101 145 | syl3anc |  |-  ( ph -> ( ( CC Dn T ) ` ( N - M ) ) e. ( Poly ` RR ) ) | 
						
							| 147 |  | plyf |  |-  ( ( ( CC Dn T ) ` ( N - M ) ) e. ( Poly ` RR ) -> ( ( CC Dn T ) ` ( N - M ) ) : CC --> CC ) | 
						
							| 148 | 146 147 | syl |  |-  ( ph -> ( ( CC Dn T ) ` ( N - M ) ) : CC --> CC ) | 
						
							| 149 | 148 | ffvelcdmda |  |-  ( ( ph /\ y e. CC ) -> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) e. CC ) | 
						
							| 150 | 144 149 | sylan2 |  |-  ( ( ph /\ y e. RR ) -> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) e. CC ) | 
						
							| 151 | 118 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 152 |  | toponmax |  |-  ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) | 
						
							| 153 | 151 152 | mp1i |  |-  ( ph -> CC e. ( TopOpen ` CCfld ) ) | 
						
							| 154 |  | dfss2 |  |-  ( RR C_ CC <-> ( RR i^i CC ) = RR ) | 
						
							| 155 | 94 154 | sylib |  |-  ( ph -> ( RR i^i CC ) = RR ) | 
						
							| 156 |  | plyf |  |-  ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( Poly ` RR ) -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) : CC --> CC ) | 
						
							| 157 | 64 156 | syl |  |-  ( ph -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) : CC --> CC ) | 
						
							| 158 | 157 | ffvelcdmda |  |-  ( ( ph /\ y e. CC ) -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) e. CC ) | 
						
							| 159 | 92 | fveq2d |  |-  ( ph -> ( ( CC Dn T ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( ( CC Dn T ) ` ( N - M ) ) ) | 
						
							| 160 |  | ssid |  |-  CC C_ CC | 
						
							| 161 | 160 | a1i |  |-  ( ph -> CC C_ CC ) | 
						
							| 162 |  | mapsspm |  |-  ( CC ^m CC ) C_ ( CC ^pm CC ) | 
						
							| 163 |  | plyf |  |-  ( T e. ( Poly ` RR ) -> T : CC --> CC ) | 
						
							| 164 | 62 163 | syl |  |-  ( ph -> T : CC --> CC ) | 
						
							| 165 | 21 21 | elmap |  |-  ( T e. ( CC ^m CC ) <-> T : CC --> CC ) | 
						
							| 166 | 164 165 | sylibr |  |-  ( ph -> T e. ( CC ^m CC ) ) | 
						
							| 167 | 162 166 | sselid |  |-  ( ph -> T e. ( CC ^pm CC ) ) | 
						
							| 168 |  | dvnp1 |  |-  ( ( CC C_ CC /\ T e. ( CC ^pm CC ) /\ ( N - ( M + 1 ) ) e. NN0 ) -> ( ( CC Dn T ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( CC _D ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ) ) | 
						
							| 169 | 161 167 16 168 | syl3anc |  |-  ( ph -> ( ( CC Dn T ) ` ( ( N - ( M + 1 ) ) + 1 ) ) = ( CC _D ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ) ) | 
						
							| 170 | 159 169 | eqtr3d |  |-  ( ph -> ( ( CC Dn T ) ` ( N - M ) ) = ( CC _D ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ) ) | 
						
							| 171 | 148 | feqmptd |  |-  ( ph -> ( ( CC Dn T ) ` ( N - M ) ) = ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) | 
						
							| 172 | 157 | feqmptd |  |-  ( ph -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) = ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) | 
						
							| 173 | 172 | oveq2d |  |-  ( ph -> ( CC _D ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ) = ( CC _D ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) | 
						
							| 174 | 170 171 173 | 3eqtr3rd |  |-  ( ph -> ( CC _D ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) = ( y e. CC |-> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) | 
						
							| 175 | 118 20 153 155 158 149 174 | dvmptres3 |  |-  ( ph -> ( RR _D ( y e. RR |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) = ( y e. RR |-> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) | 
						
							| 176 | 20 143 150 175 2 117 118 124 | dvmptres |  |-  ( ph -> ( RR _D ( y e. A |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) = ( y e. A |-> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) | 
						
							| 177 | 20 127 132 140 141 142 176 | dvmptsub |  |-  ( ph -> ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) = ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) ) | 
						
							| 178 | 177 | dmeqd |  |-  ( ph -> dom ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) = dom ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) ) | 
						
							| 179 |  | ovex |  |-  ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) e. _V | 
						
							| 180 |  | eqid |  |-  ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) = ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) | 
						
							| 181 | 179 180 | dmmpti |  |-  dom ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) = A | 
						
							| 182 | 178 181 | eqtrdi |  |-  ( ph -> dom ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) = A ) | 
						
							| 183 | 126 182 | sseqtrrid |  |-  ( ph -> ( A \ { B } ) C_ dom ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ) | 
						
							| 184 |  | simpr |  |-  ( ( ph /\ y e. CC ) -> y e. CC ) | 
						
							| 185 | 48 | adantr |  |-  ( ( ph /\ y e. CC ) -> B e. RR ) | 
						
							| 186 | 185 | recnd |  |-  ( ( ph /\ y e. CC ) -> B e. CC ) | 
						
							| 187 | 184 186 | subcld |  |-  ( ( ph /\ y e. CC ) -> ( y - B ) e. CC ) | 
						
							| 188 | 78 | adantr |  |-  ( ( ph /\ y e. CC ) -> M e. NN0 ) | 
						
							| 189 | 80 | a1i |  |-  ( ( ph /\ y e. CC ) -> 1 e. NN0 ) | 
						
							| 190 | 188 189 | nn0addcld |  |-  ( ( ph /\ y e. CC ) -> ( M + 1 ) e. NN0 ) | 
						
							| 191 | 187 190 | expcld |  |-  ( ( ph /\ y e. CC ) -> ( ( y - B ) ^ ( M + 1 ) ) e. CC ) | 
						
							| 192 | 144 191 | sylan2 |  |-  ( ( ph /\ y e. RR ) -> ( ( y - B ) ^ ( M + 1 ) ) e. CC ) | 
						
							| 193 | 90 | adantr |  |-  ( ( ph /\ y e. CC ) -> M e. CC ) | 
						
							| 194 |  | 1cnd |  |-  ( ( ph /\ y e. CC ) -> 1 e. CC ) | 
						
							| 195 | 193 194 | addcld |  |-  ( ( ph /\ y e. CC ) -> ( M + 1 ) e. CC ) | 
						
							| 196 | 187 188 | expcld |  |-  ( ( ph /\ y e. CC ) -> ( ( y - B ) ^ M ) e. CC ) | 
						
							| 197 | 195 196 | mulcld |  |-  ( ( ph /\ y e. CC ) -> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) e. CC ) | 
						
							| 198 | 144 197 | sylan2 |  |-  ( ( ph /\ y e. RR ) -> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) e. CC ) | 
						
							| 199 | 21 | prid2 |  |-  CC e. { RR , CC } | 
						
							| 200 | 199 | a1i |  |-  ( ph -> CC e. { RR , CC } ) | 
						
							| 201 |  | simpr |  |-  ( ( ph /\ x e. CC ) -> x e. CC ) | 
						
							| 202 |  | elfznn |  |-  ( ( M + 1 ) e. ( 1 ... N ) -> ( M + 1 ) e. NN ) | 
						
							| 203 | 11 202 | syl |  |-  ( ph -> ( M + 1 ) e. NN ) | 
						
							| 204 | 203 | nnnn0d |  |-  ( ph -> ( M + 1 ) e. NN0 ) | 
						
							| 205 | 204 | adantr |  |-  ( ( ph /\ x e. CC ) -> ( M + 1 ) e. NN0 ) | 
						
							| 206 | 201 205 | expcld |  |-  ( ( ph /\ x e. CC ) -> ( x ^ ( M + 1 ) ) e. CC ) | 
						
							| 207 |  | ovexd |  |-  ( ( ph /\ x e. CC ) -> ( ( M + 1 ) x. ( x ^ M ) ) e. _V ) | 
						
							| 208 | 200 | dvmptid |  |-  ( ph -> ( CC _D ( y e. CC |-> y ) ) = ( y e. CC |-> 1 ) ) | 
						
							| 209 |  | 0cnd |  |-  ( ( ph /\ y e. CC ) -> 0 e. CC ) | 
						
							| 210 | 48 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 211 | 200 210 | dvmptc |  |-  ( ph -> ( CC _D ( y e. CC |-> B ) ) = ( y e. CC |-> 0 ) ) | 
						
							| 212 | 200 184 194 208 186 209 211 | dvmptsub |  |-  ( ph -> ( CC _D ( y e. CC |-> ( y - B ) ) ) = ( y e. CC |-> ( 1 - 0 ) ) ) | 
						
							| 213 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 214 | 213 | mpteq2i |  |-  ( y e. CC |-> ( 1 - 0 ) ) = ( y e. CC |-> 1 ) | 
						
							| 215 | 212 214 | eqtrdi |  |-  ( ph -> ( CC _D ( y e. CC |-> ( y - B ) ) ) = ( y e. CC |-> 1 ) ) | 
						
							| 216 |  | dvexp |  |-  ( ( M + 1 ) e. NN -> ( CC _D ( x e. CC |-> ( x ^ ( M + 1 ) ) ) ) = ( x e. CC |-> ( ( M + 1 ) x. ( x ^ ( ( M + 1 ) - 1 ) ) ) ) ) | 
						
							| 217 | 203 216 | syl |  |-  ( ph -> ( CC _D ( x e. CC |-> ( x ^ ( M + 1 ) ) ) ) = ( x e. CC |-> ( ( M + 1 ) x. ( x ^ ( ( M + 1 ) - 1 ) ) ) ) ) | 
						
							| 218 | 90 91 | pncand |  |-  ( ph -> ( ( M + 1 ) - 1 ) = M ) | 
						
							| 219 | 218 | oveq2d |  |-  ( ph -> ( x ^ ( ( M + 1 ) - 1 ) ) = ( x ^ M ) ) | 
						
							| 220 | 219 | oveq2d |  |-  ( ph -> ( ( M + 1 ) x. ( x ^ ( ( M + 1 ) - 1 ) ) ) = ( ( M + 1 ) x. ( x ^ M ) ) ) | 
						
							| 221 | 220 | mpteq2dv |  |-  ( ph -> ( x e. CC |-> ( ( M + 1 ) x. ( x ^ ( ( M + 1 ) - 1 ) ) ) ) = ( x e. CC |-> ( ( M + 1 ) x. ( x ^ M ) ) ) ) | 
						
							| 222 | 217 221 | eqtrd |  |-  ( ph -> ( CC _D ( x e. CC |-> ( x ^ ( M + 1 ) ) ) ) = ( x e. CC |-> ( ( M + 1 ) x. ( x ^ M ) ) ) ) | 
						
							| 223 |  | oveq1 |  |-  ( x = ( y - B ) -> ( x ^ ( M + 1 ) ) = ( ( y - B ) ^ ( M + 1 ) ) ) | 
						
							| 224 |  | oveq1 |  |-  ( x = ( y - B ) -> ( x ^ M ) = ( ( y - B ) ^ M ) ) | 
						
							| 225 | 224 | oveq2d |  |-  ( x = ( y - B ) -> ( ( M + 1 ) x. ( x ^ M ) ) = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) | 
						
							| 226 | 200 200 187 194 206 207 215 222 223 225 | dvmptco |  |-  ( ph -> ( CC _D ( y e. CC |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = ( y e. CC |-> ( ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) x. 1 ) ) ) | 
						
							| 227 | 197 | mulridd |  |-  ( ( ph /\ y e. CC ) -> ( ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) x. 1 ) = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) | 
						
							| 228 | 227 | mpteq2dva |  |-  ( ph -> ( y e. CC |-> ( ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) x. 1 ) ) = ( y e. CC |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) | 
						
							| 229 | 226 228 | eqtrd |  |-  ( ph -> ( CC _D ( y e. CC |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = ( y e. CC |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) | 
						
							| 230 | 118 20 153 155 191 197 229 | dvmptres3 |  |-  ( ph -> ( RR _D ( y e. RR |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = ( y e. RR |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) | 
						
							| 231 | 20 192 198 230 2 117 118 124 | dvmptres |  |-  ( ph -> ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) | 
						
							| 232 | 231 | dmeqd |  |-  ( ph -> dom ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = dom ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) | 
						
							| 233 |  | ovex |  |-  ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) e. _V | 
						
							| 234 |  | eqid |  |-  ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) = ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) | 
						
							| 235 | 233 234 | dmmpti |  |-  dom ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) = A | 
						
							| 236 | 232 235 | eqtrdi |  |-  ( ph -> dom ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = A ) | 
						
							| 237 | 126 236 | sseqtrrid |  |-  ( ph -> ( A \ { B } ) C_ dom ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ) | 
						
							| 238 | 20 27 2 14 47 6 | dvntaylp0 |  |-  ( ph -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) = ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) ) | 
						
							| 239 | 238 | oveq2d |  |-  ( ph -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) ) = ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) ) ) | 
						
							| 240 | 116 5 | ffvelcdmd |  |-  ( ph -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) e. CC ) | 
						
							| 241 | 240 | subidd |  |-  ( ph -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) ) = 0 ) | 
						
							| 242 | 239 241 | eqtrd |  |-  ( ph -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) ) = 0 ) | 
						
							| 243 | 118 | subcn |  |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 244 | 243 | a1i |  |-  ( ph -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 245 |  | dvcn |  |-  ( ( ( RR C_ CC /\ ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) : A --> CC /\ A C_ RR ) /\ dom ( RR _D ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ) = A ) -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) e. ( A -cn-> CC ) ) | 
						
							| 246 | 94 116 2 114 245 | syl31anc |  |-  ( ph -> ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) e. ( A -cn-> CC ) ) | 
						
							| 247 | 138 246 | eqeltrrd |  |-  ( ph -> ( y e. A |-> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) ) e. ( A -cn-> CC ) ) | 
						
							| 248 |  | plycn |  |-  ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( Poly ` RR ) -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 249 | 64 248 | syl |  |-  ( ph -> ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 250 | 2 25 | sstrdi |  |-  ( ph -> A C_ CC ) | 
						
							| 251 |  | cncfmptid |  |-  ( ( A C_ CC /\ CC C_ CC ) -> ( y e. A |-> y ) e. ( A -cn-> CC ) ) | 
						
							| 252 | 250 160 251 | sylancl |  |-  ( ph -> ( y e. A |-> y ) e. ( A -cn-> CC ) ) | 
						
							| 253 | 249 252 | cncfmpt1f |  |-  ( ph -> ( y e. A |-> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) e. ( A -cn-> CC ) ) | 
						
							| 254 | 118 244 247 253 | cncfmpt2f |  |-  ( ph -> ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) e. ( A -cn-> CC ) ) | 
						
							| 255 |  | fveq2 |  |-  ( y = B -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) = ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) ) | 
						
							| 256 |  | fveq2 |  |-  ( y = B -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) = ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) ) | 
						
							| 257 | 255 256 | oveq12d |  |-  ( y = B -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) = ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) ) ) | 
						
							| 258 | 254 5 257 | cnmptlimc |  |-  ( ph -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` B ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` B ) ) e. ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) limCC B ) ) | 
						
							| 259 | 242 258 | eqeltrrd |  |-  ( ph -> 0 e. ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) limCC B ) ) | 
						
							| 260 | 210 | subidd |  |-  ( ph -> ( B - B ) = 0 ) | 
						
							| 261 | 260 | oveq1d |  |-  ( ph -> ( ( B - B ) ^ ( M + 1 ) ) = ( 0 ^ ( M + 1 ) ) ) | 
						
							| 262 | 203 | 0expd |  |-  ( ph -> ( 0 ^ ( M + 1 ) ) = 0 ) | 
						
							| 263 | 261 262 | eqtrd |  |-  ( ph -> ( ( B - B ) ^ ( M + 1 ) ) = 0 ) | 
						
							| 264 | 250 | sselda |  |-  ( ( ph /\ y e. A ) -> y e. CC ) | 
						
							| 265 | 264 191 | syldan |  |-  ( ( ph /\ y e. A ) -> ( ( y - B ) ^ ( M + 1 ) ) e. CC ) | 
						
							| 266 | 265 | fmpttd |  |-  ( ph -> ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) : A --> CC ) | 
						
							| 267 |  | dvcn |  |-  ( ( ( RR C_ CC /\ ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) : A --> CC /\ A C_ RR ) /\ dom ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) = A ) -> ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) e. ( A -cn-> CC ) ) | 
						
							| 268 | 94 266 2 236 267 | syl31anc |  |-  ( ph -> ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) e. ( A -cn-> CC ) ) | 
						
							| 269 |  | oveq1 |  |-  ( y = B -> ( y - B ) = ( B - B ) ) | 
						
							| 270 | 269 | oveq1d |  |-  ( y = B -> ( ( y - B ) ^ ( M + 1 ) ) = ( ( B - B ) ^ ( M + 1 ) ) ) | 
						
							| 271 | 268 5 270 | cnmptlimc |  |-  ( ph -> ( ( B - B ) ^ ( M + 1 ) ) e. ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) limCC B ) ) | 
						
							| 272 | 263 271 | eqeltrrd |  |-  ( ph -> 0 e. ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) limCC B ) ) | 
						
							| 273 | 250 | ssdifssd |  |-  ( ph -> ( A \ { B } ) C_ CC ) | 
						
							| 274 | 273 | sselda |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> y e. CC ) | 
						
							| 275 | 210 | adantr |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> B e. CC ) | 
						
							| 276 | 274 275 | subcld |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> ( y - B ) e. CC ) | 
						
							| 277 |  | eldifsni |  |-  ( y e. ( A \ { B } ) -> y =/= B ) | 
						
							| 278 | 277 | adantl |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> y =/= B ) | 
						
							| 279 | 274 275 278 | subne0d |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> ( y - B ) =/= 0 ) | 
						
							| 280 | 203 | adantr |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> ( M + 1 ) e. NN ) | 
						
							| 281 | 280 | nnzd |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> ( M + 1 ) e. ZZ ) | 
						
							| 282 | 276 279 281 | expne0d |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> ( ( y - B ) ^ ( M + 1 ) ) =/= 0 ) | 
						
							| 283 | 282 | necomd |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> 0 =/= ( ( y - B ) ^ ( M + 1 ) ) ) | 
						
							| 284 | 283 | neneqd |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> -. 0 = ( ( y - B ) ^ ( M + 1 ) ) ) | 
						
							| 285 | 284 | nrexdv |  |-  ( ph -> -. E. y e. ( A \ { B } ) 0 = ( ( y - B ) ^ ( M + 1 ) ) ) | 
						
							| 286 |  | df-ima |  |-  ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) " ( A \ { B } ) ) = ran ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) |` ( A \ { B } ) ) | 
						
							| 287 | 286 | eleq2i |  |-  ( 0 e. ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) " ( A \ { B } ) ) <-> 0 e. ran ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) |` ( A \ { B } ) ) ) | 
						
							| 288 |  | resmpt |  |-  ( ( A \ { B } ) C_ A -> ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) |` ( A \ { B } ) ) = ( y e. ( A \ { B } ) |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) | 
						
							| 289 | 126 288 | ax-mp |  |-  ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) |` ( A \ { B } ) ) = ( y e. ( A \ { B } ) |-> ( ( y - B ) ^ ( M + 1 ) ) ) | 
						
							| 290 |  | ovex |  |-  ( ( y - B ) ^ ( M + 1 ) ) e. _V | 
						
							| 291 | 289 290 | elrnmpti |  |-  ( 0 e. ran ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) |` ( A \ { B } ) ) <-> E. y e. ( A \ { B } ) 0 = ( ( y - B ) ^ ( M + 1 ) ) ) | 
						
							| 292 | 287 291 | bitri |  |-  ( 0 e. ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) " ( A \ { B } ) ) <-> E. y e. ( A \ { B } ) 0 = ( ( y - B ) ^ ( M + 1 ) ) ) | 
						
							| 293 | 285 292 | sylnibr |  |-  ( ph -> -. 0 e. ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) " ( A \ { B } ) ) ) | 
						
							| 294 | 90 | adantr |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> M e. CC ) | 
						
							| 295 |  | 1cnd |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> 1 e. CC ) | 
						
							| 296 | 294 295 | addcld |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> ( M + 1 ) e. CC ) | 
						
							| 297 | 274 196 | syldan |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> ( ( y - B ) ^ M ) e. CC ) | 
						
							| 298 | 280 | nnne0d |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> ( M + 1 ) =/= 0 ) | 
						
							| 299 | 77 | adantr |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> M e. NN ) | 
						
							| 300 | 299 | nnzd |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> M e. ZZ ) | 
						
							| 301 | 276 279 300 | expne0d |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> ( ( y - B ) ^ M ) =/= 0 ) | 
						
							| 302 | 296 297 298 301 | mulne0d |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) =/= 0 ) | 
						
							| 303 | 302 | necomd |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> 0 =/= ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) | 
						
							| 304 | 303 | neneqd |  |-  ( ( ph /\ y e. ( A \ { B } ) ) -> -. 0 = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) | 
						
							| 305 | 304 | nrexdv |  |-  ( ph -> -. E. y e. ( A \ { B } ) 0 = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) | 
						
							| 306 | 231 | imaeq1d |  |-  ( ph -> ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) " ( A \ { B } ) ) = ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) " ( A \ { B } ) ) ) | 
						
							| 307 |  | df-ima |  |-  ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) " ( A \ { B } ) ) = ran ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) | 
						
							| 308 | 306 307 | eqtrdi |  |-  ( ph -> ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) " ( A \ { B } ) ) = ran ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) ) | 
						
							| 309 | 308 | eleq2d |  |-  ( ph -> ( 0 e. ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) " ( A \ { B } ) ) <-> 0 e. ran ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) ) ) | 
						
							| 310 |  | resmpt |  |-  ( ( A \ { B } ) C_ A -> ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) = ( y e. ( A \ { B } ) |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) | 
						
							| 311 | 126 310 | ax-mp |  |-  ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) = ( y e. ( A \ { B } ) |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) | 
						
							| 312 | 311 233 | elrnmpti |  |-  ( 0 e. ran ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) |` ( A \ { B } ) ) <-> E. y e. ( A \ { B } ) 0 = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) | 
						
							| 313 | 309 312 | bitrdi |  |-  ( ph -> ( 0 e. ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) " ( A \ { B } ) ) <-> E. y e. ( A \ { B } ) 0 = ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ) | 
						
							| 314 | 305 313 | mtbird |  |-  ( ph -> -. 0 e. ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) " ( A \ { B } ) ) ) | 
						
							| 315 |  | eldifi |  |-  ( x e. ( A \ { B } ) -> x e. A ) | 
						
							| 316 | 131 | ffvelcdmda |  |-  ( ( ph /\ x e. A ) -> ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) e. CC ) | 
						
							| 317 | 315 316 | sylan2 |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) e. CC ) | 
						
							| 318 | 2 | ssdifssd |  |-  ( ph -> ( A \ { B } ) C_ RR ) | 
						
							| 319 | 318 | sselda |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> x e. RR ) | 
						
							| 320 | 319 | recnd |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> x e. CC ) | 
						
							| 321 | 148 | ffvelcdmda |  |-  ( ( ph /\ x e. CC ) -> ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) e. CC ) | 
						
							| 322 | 320 321 | syldan |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) e. CC ) | 
						
							| 323 | 317 322 | subcld |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) e. CC ) | 
						
							| 324 | 48 | adantr |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> B e. RR ) | 
						
							| 325 | 319 324 | resubcld |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( x - B ) e. RR ) | 
						
							| 326 | 78 | adantr |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> M e. NN0 ) | 
						
							| 327 | 325 326 | reexpcld |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( x - B ) ^ M ) e. RR ) | 
						
							| 328 | 327 | recnd |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( x - B ) ^ M ) e. CC ) | 
						
							| 329 | 324 | recnd |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> B e. CC ) | 
						
							| 330 | 320 329 | subcld |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( x - B ) e. CC ) | 
						
							| 331 |  | eldifsni |  |-  ( x e. ( A \ { B } ) -> x =/= B ) | 
						
							| 332 | 331 | adantl |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> x =/= B ) | 
						
							| 333 | 320 329 332 | subne0d |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( x - B ) =/= 0 ) | 
						
							| 334 | 326 | nn0zd |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> M e. ZZ ) | 
						
							| 335 | 330 333 334 | expne0d |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( x - B ) ^ M ) =/= 0 ) | 
						
							| 336 | 323 328 335 | divcld |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) e. CC ) | 
						
							| 337 | 203 | nnrecred |  |-  ( ph -> ( 1 / ( M + 1 ) ) e. RR ) | 
						
							| 338 | 337 | recnd |  |-  ( ph -> ( 1 / ( M + 1 ) ) e. CC ) | 
						
							| 339 | 338 | adantr |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( 1 / ( M + 1 ) ) e. CC ) | 
						
							| 340 |  | txtopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) e. ( TopOn ` ( CC X. CC ) ) ) | 
						
							| 341 | 151 151 340 | mp2an |  |-  ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) e. ( TopOn ` ( CC X. CC ) ) | 
						
							| 342 | 341 | toponrestid |  |-  ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) = ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. CC ) ) | 
						
							| 343 |  | limcresi |  |-  ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) limCC B ) C_ ( ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) |` ( A \ { B } ) ) limCC B ) | 
						
							| 344 |  | resmpt |  |-  ( ( A \ { B } ) C_ A -> ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) |` ( A \ { B } ) ) = ( x e. ( A \ { B } ) |-> ( 1 / ( M + 1 ) ) ) ) | 
						
							| 345 | 126 344 | ax-mp |  |-  ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) |` ( A \ { B } ) ) = ( x e. ( A \ { B } ) |-> ( 1 / ( M + 1 ) ) ) | 
						
							| 346 | 345 | oveq1i |  |-  ( ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) |` ( A \ { B } ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( 1 / ( M + 1 ) ) ) limCC B ) | 
						
							| 347 | 343 346 | sseqtri |  |-  ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) limCC B ) C_ ( ( x e. ( A \ { B } ) |-> ( 1 / ( M + 1 ) ) ) limCC B ) | 
						
							| 348 |  | cncfmptc |  |-  ( ( ( 1 / ( M + 1 ) ) e. RR /\ A C_ CC /\ RR C_ CC ) -> ( x e. A |-> ( 1 / ( M + 1 ) ) ) e. ( A -cn-> RR ) ) | 
						
							| 349 | 337 250 94 348 | syl3anc |  |-  ( ph -> ( x e. A |-> ( 1 / ( M + 1 ) ) ) e. ( A -cn-> RR ) ) | 
						
							| 350 |  | eqidd |  |-  ( x = B -> ( 1 / ( M + 1 ) ) = ( 1 / ( M + 1 ) ) ) | 
						
							| 351 | 349 5 350 | cnmptlimc |  |-  ( ph -> ( 1 / ( M + 1 ) ) e. ( ( x e. A |-> ( 1 / ( M + 1 ) ) ) limCC B ) ) | 
						
							| 352 | 347 351 | sselid |  |-  ( ph -> ( 1 / ( M + 1 ) ) e. ( ( x e. ( A \ { B } ) |-> ( 1 / ( M + 1 ) ) ) limCC B ) ) | 
						
							| 353 | 118 | mpomulcn |  |-  ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 354 |  | 0cn |  |-  0 e. CC | 
						
							| 355 |  | opelxpi |  |-  ( ( 0 e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) -> <. 0 , ( 1 / ( M + 1 ) ) >. e. ( CC X. CC ) ) | 
						
							| 356 | 354 338 355 | sylancr |  |-  ( ph -> <. 0 , ( 1 / ( M + 1 ) ) >. e. ( CC X. CC ) ) | 
						
							| 357 | 341 | toponunii |  |-  ( CC X. CC ) = U. ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) | 
						
							| 358 | 357 | cncnpi |  |-  ( ( ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) /\ <. 0 , ( 1 / ( M + 1 ) ) >. e. ( CC X. CC ) ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. 0 , ( 1 / ( M + 1 ) ) >. ) ) | 
						
							| 359 | 353 356 358 | sylancr |  |-  ( ph -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. 0 , ( 1 / ( M + 1 ) ) >. ) ) | 
						
							| 360 | 336 339 161 161 118 342 8 352 359 | limccnp2 |  |-  ( ph -> ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) ) | 
						
							| 361 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 362 | 361 338 | jca |  |-  ( ph -> ( 0 e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) ) | 
						
							| 363 |  | ovmpot |  |-  ( ( 0 e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) -> ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( 0 x. ( 1 / ( M + 1 ) ) ) ) | 
						
							| 364 | 362 363 | syl |  |-  ( ph -> ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( 0 x. ( 1 / ( M + 1 ) ) ) ) | 
						
							| 365 |  | df-mpt |  |-  ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) = { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) } | 
						
							| 366 | 365 | a1i |  |-  ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) = { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) } ) | 
						
							| 367 |  | idd |  |-  ( ph -> ( x e. ( A \ { B } ) -> x e. ( A \ { B } ) ) ) | 
						
							| 368 | 367 | adantrd |  |-  ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) -> x e. ( A \ { B } ) ) ) | 
						
							| 369 | 336 339 | jca |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) ) | 
						
							| 370 |  | ovmpot |  |-  ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) | 
						
							| 371 | 369 370 | syl |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) | 
						
							| 372 |  | eqeq2 |  |-  ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) <-> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) | 
						
							| 373 | 372 | biimpd |  |-  ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) | 
						
							| 374 | 371 373 | syl |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) | 
						
							| 375 | 374 | ex |  |-  ( ph -> ( x e. ( A \ { B } ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) ) | 
						
							| 376 | 375 | impd |  |-  ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) | 
						
							| 377 | 368 376 | jcad |  |-  ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) -> ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) ) | 
						
							| 378 | 367 | adantrd |  |-  ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) -> x e. ( A \ { B } ) ) ) | 
						
							| 379 | 370 | eqcomd |  |-  ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) e. CC /\ ( 1 / ( M + 1 ) ) e. CC ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) | 
						
							| 380 | 369 379 | syl |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) | 
						
							| 381 |  | eqeq2 |  |-  ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) <-> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) | 
						
							| 382 | 381 | biimpd |  |-  ( ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) | 
						
							| 383 | 380 382 | syl |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) | 
						
							| 384 | 383 | ex |  |-  ( ph -> ( x e. ( A \ { B } ) -> ( z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) ) | 
						
							| 385 | 384 | impd |  |-  ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) -> z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) | 
						
							| 386 | 378 385 | jcad |  |-  ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) -> ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) ) ) | 
						
							| 387 | 377 386 | impbid |  |-  ( ph -> ( ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) <-> ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) ) | 
						
							| 388 | 387 | opabbidv |  |-  ( ph -> { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) } = { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) } ) | 
						
							| 389 | 366 388 | eqtrd |  |-  ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) = { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) } ) | 
						
							| 390 |  | df-mpt |  |-  ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) = { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) } | 
						
							| 391 | 390 | eqcomi |  |-  { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) } = ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) | 
						
							| 392 | 391 | a1i |  |-  ( ph -> { <. x , z >. | ( x e. ( A \ { B } ) /\ z = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) } = ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) | 
						
							| 393 | 389 392 | eqtrd |  |-  ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) ) | 
						
							| 394 | 393 | oveq1d |  |-  ( ph -> ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) | 
						
							| 395 | 364 394 | jca |  |-  ( ph -> ( ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( 0 x. ( 1 / ( M + 1 ) ) ) /\ ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) ) | 
						
							| 396 |  | eleq12 |  |-  ( ( ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) = ( 0 x. ( 1 / ( M + 1 ) ) ) /\ ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) -> ( ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) <-> ( 0 x. ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) ) | 
						
							| 397 | 395 396 | syl |  |-  ( ph -> ( ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) <-> ( 0 x. ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) ) | 
						
							| 398 | 397 | biimpd |  |-  ( ph -> ( ( 0 ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( 1 / ( M + 1 ) ) ) ) limCC B ) -> ( 0 x. ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) ) | 
						
							| 399 | 360 398 | mpd |  |-  ( ph -> ( 0 x. ( 1 / ( M + 1 ) ) ) e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) ) | 
						
							| 400 | 338 | mul02d |  |-  ( ph -> ( 0 x. ( 1 / ( M + 1 ) ) ) = 0 ) | 
						
							| 401 | 177 | fveq1d |  |-  ( ph -> ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) = ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) ` x ) ) | 
						
							| 402 |  | fveq2 |  |-  ( y = x -> ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) = ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) ) | 
						
							| 403 |  | fveq2 |  |-  ( y = x -> ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) = ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) | 
						
							| 404 | 402 403 | oveq12d |  |-  ( y = x -> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) = ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) ) | 
						
							| 405 |  | ovex |  |-  ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) e. _V | 
						
							| 406 | 404 180 405 | fvmpt |  |-  ( x e. A -> ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) ` x ) = ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) ) | 
						
							| 407 | 315 406 | syl |  |-  ( x e. ( A \ { B } ) -> ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - M ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` y ) ) ) ` x ) = ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) ) | 
						
							| 408 | 401 407 | sylan9eq |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) = ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) ) | 
						
							| 409 | 231 | fveq1d |  |-  ( ph -> ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) = ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ` x ) ) | 
						
							| 410 |  | oveq1 |  |-  ( y = x -> ( y - B ) = ( x - B ) ) | 
						
							| 411 | 410 | oveq1d |  |-  ( y = x -> ( ( y - B ) ^ M ) = ( ( x - B ) ^ M ) ) | 
						
							| 412 | 411 | oveq2d |  |-  ( y = x -> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) = ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) ) | 
						
							| 413 |  | ovex |  |-  ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) e. _V | 
						
							| 414 | 412 234 413 | fvmpt |  |-  ( x e. A -> ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ` x ) = ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) ) | 
						
							| 415 | 315 414 | syl |  |-  ( x e. ( A \ { B } ) -> ( ( y e. A |-> ( ( M + 1 ) x. ( ( y - B ) ^ M ) ) ) ` x ) = ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) ) | 
						
							| 416 | 409 415 | sylan9eq |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) = ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) ) | 
						
							| 417 | 203 | adantr |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( M + 1 ) e. NN ) | 
						
							| 418 | 417 | nncnd |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( M + 1 ) e. CC ) | 
						
							| 419 | 418 328 | mulcomd |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( M + 1 ) x. ( ( x - B ) ^ M ) ) = ( ( ( x - B ) ^ M ) x. ( M + 1 ) ) ) | 
						
							| 420 | 416 419 | eqtrd |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) = ( ( ( x - B ) ^ M ) x. ( M + 1 ) ) ) | 
						
							| 421 | 408 420 | oveq12d |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) / ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) ) = ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( ( x - B ) ^ M ) x. ( M + 1 ) ) ) ) | 
						
							| 422 | 417 | nnne0d |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( M + 1 ) =/= 0 ) | 
						
							| 423 | 323 328 418 335 422 | divdiv1d |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) / ( M + 1 ) ) = ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( ( x - B ) ^ M ) x. ( M + 1 ) ) ) ) | 
						
							| 424 | 336 418 422 | divrecd |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) / ( M + 1 ) ) = ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) | 
						
							| 425 | 421 423 424 | 3eqtr2rd |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) = ( ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) / ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) ) ) | 
						
							| 426 | 425 | mpteq2dva |  |-  ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) / ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) ) ) ) | 
						
							| 427 | 426 | oveq1d |  |-  ( ph -> ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( ( RR Dn F ) ` ( N - M ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - M ) ) ` x ) ) / ( ( x - B ) ^ M ) ) x. ( 1 / ( M + 1 ) ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) / ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) ) ) limCC B ) ) | 
						
							| 428 | 399 400 427 | 3eltr3d |  |-  ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( RR _D ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ) ` x ) / ( ( RR _D ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ) ` x ) ) ) limCC B ) ) | 
						
							| 429 | 2 71 84 124 5 125 183 237 259 272 293 314 428 | lhop |  |-  ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) / ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) ) ) limCC B ) ) | 
						
							| 430 | 315 | adantl |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> x e. A ) | 
						
							| 431 |  | fveq2 |  |-  ( y = x -> ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) = ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) ) | 
						
							| 432 |  | fveq2 |  |-  ( y = x -> ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) = ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) | 
						
							| 433 | 431 432 | oveq12d |  |-  ( y = x -> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) = ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) ) | 
						
							| 434 |  | eqid |  |-  ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) = ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) | 
						
							| 435 |  | ovex |  |-  ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) e. _V | 
						
							| 436 | 433 434 435 | fvmpt |  |-  ( x e. A -> ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) = ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) ) | 
						
							| 437 | 430 436 | syl |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) = ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) ) | 
						
							| 438 | 410 | oveq1d |  |-  ( y = x -> ( ( y - B ) ^ ( M + 1 ) ) = ( ( x - B ) ^ ( M + 1 ) ) ) | 
						
							| 439 |  | eqid |  |-  ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) = ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) | 
						
							| 440 |  | ovex |  |-  ( ( x - B ) ^ ( M + 1 ) ) e. _V | 
						
							| 441 | 438 439 440 | fvmpt |  |-  ( x e. A -> ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) = ( ( x - B ) ^ ( M + 1 ) ) ) | 
						
							| 442 | 430 441 | syl |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) = ( ( x - B ) ^ ( M + 1 ) ) ) | 
						
							| 443 | 437 442 | oveq12d |  |-  ( ( ph /\ x e. ( A \ { B } ) ) -> ( ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) / ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) ) = ( ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( M + 1 ) ) ) ) | 
						
							| 444 | 443 | mpteq2dva |  |-  ( ph -> ( x e. ( A \ { B } ) |-> ( ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) / ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) ) ) = ( x e. ( A \ { B } ) |-> ( ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( M + 1 ) ) ) ) ) | 
						
							| 445 | 444 | oveq1d |  |-  ( ph -> ( ( x e. ( A \ { B } ) |-> ( ( ( y e. A |-> ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` y ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` y ) ) ) ` x ) / ( ( y e. A |-> ( ( y - B ) ^ ( M + 1 ) ) ) ` x ) ) ) limCC B ) = ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( M + 1 ) ) ) ) limCC B ) ) | 
						
							| 446 | 429 445 | eleqtrd |  |-  ( ph -> 0 e. ( ( x e. ( A \ { B } ) |-> ( ( ( ( ( RR Dn F ) ` ( N - ( M + 1 ) ) ) ` x ) - ( ( ( CC Dn T ) ` ( N - ( M + 1 ) ) ) ` x ) ) / ( ( x - B ) ^ ( M + 1 ) ) ) ) limCC B ) ) |