Step |
Hyp |
Ref |
Expression |
1 |
|
2vmadivsum.1 |
|
2 |
|
2vmadivsum.2 |
|
3 |
|
vmalogdivsum2 |
|
4 |
3
|
a1i |
|
5 |
|
fzfid |
|
6 |
|
elfznn |
|
7 |
6
|
adantl |
|
8 |
|
vmacl |
|
9 |
7 8
|
syl |
|
10 |
9 7
|
nndivred |
|
11 |
|
fzfid |
|
12 |
|
elfznn |
|
13 |
12
|
adantl |
|
14 |
|
vmacl |
|
15 |
13 14
|
syl |
|
16 |
15 13
|
nndivred |
|
17 |
11 16
|
fsumrecl |
|
18 |
10 17
|
remulcld |
|
19 |
5 18
|
fsumrecl |
|
20 |
|
elioore |
|
21 |
20
|
adantl |
|
22 |
|
eliooord |
|
23 |
22
|
adantl |
|
24 |
23
|
simpld |
|
25 |
21 24
|
rplogcld |
|
26 |
19 25
|
rerpdivcld |
|
27 |
|
1rp |
|
28 |
27
|
a1i |
|
29 |
|
1red |
|
30 |
29 21 24
|
ltled |
|
31 |
21 28 30
|
rpgecld |
|
32 |
31
|
relogcld |
|
33 |
32
|
rehalfcld |
|
34 |
26 33
|
resubcld |
|
35 |
34
|
recnd |
|
36 |
31
|
adantr |
|
37 |
7
|
nnrpd |
|
38 |
36 37
|
rpdivcld |
|
39 |
38
|
relogcld |
|
40 |
10 39
|
remulcld |
|
41 |
5 40
|
fsumrecl |
|
42 |
41 25
|
rerpdivcld |
|
43 |
42 33
|
resubcld |
|
44 |
43
|
recnd |
|
45 |
19
|
recnd |
|
46 |
41
|
recnd |
|
47 |
32
|
recnd |
|
48 |
25
|
rpne0d |
|
49 |
45 46 47 48
|
divsubdird |
|
50 |
10
|
recnd |
|
51 |
17
|
recnd |
|
52 |
39
|
recnd |
|
53 |
50 51 52
|
subdid |
|
54 |
53
|
sumeq2dv |
|
55 |
18
|
recnd |
|
56 |
40
|
recnd |
|
57 |
5 55 56
|
fsumsub |
|
58 |
54 57
|
eqtrd |
|
59 |
58
|
oveq1d |
|
60 |
26
|
recnd |
|
61 |
42
|
recnd |
|
62 |
33
|
recnd |
|
63 |
60 61 62
|
nnncan2d |
|
64 |
49 59 63
|
3eqtr4d |
|
65 |
64
|
mpteq2dva |
|
66 |
|
1red |
|
67 |
5 10
|
fsumrecl |
|
68 |
67 25
|
rerpdivcld |
|
69 |
1
|
rpred |
|
70 |
69
|
adantr |
|
71 |
|
ioossre |
|
72 |
|
1cnd |
|
73 |
|
o1const |
|
74 |
71 72 73
|
sylancr |
|
75 |
68
|
recnd |
|
76 |
|
1cnd |
|
77 |
67
|
recnd |
|
78 |
77 47 47 48
|
divsubdird |
|
79 |
77 47
|
subcld |
|
80 |
79 47 48
|
divrecd |
|
81 |
47 48
|
dividd |
|
82 |
81
|
oveq2d |
|
83 |
78 80 82
|
3eqtr3d |
|
84 |
83
|
mpteq2dva |
|
85 |
67 32
|
resubcld |
|
86 |
29 25
|
rerpdivcld |
|
87 |
31
|
ex |
|
88 |
87
|
ssrdv |
|
89 |
|
vmadivsum |
|
90 |
89
|
a1i |
|
91 |
88 90
|
o1res2 |
|
92 |
|
divlogrlim |
|
93 |
|
rlimo1 |
|
94 |
92 93
|
mp1i |
|
95 |
85 86 91 94
|
o1mul2 |
|
96 |
84 95
|
eqeltrrd |
|
97 |
75 76 96
|
o1dif |
|
98 |
74 97
|
mpbird |
|
99 |
69
|
recnd |
|
100 |
|
o1const |
|
101 |
71 99 100
|
sylancr |
|
102 |
68 70 98 101
|
o1mul2 |
|
103 |
68 70
|
remulcld |
|
104 |
17 39
|
resubcld |
|
105 |
10 104
|
remulcld |
|
106 |
5 105
|
fsumrecl |
|
107 |
106
|
recnd |
|
108 |
107 47 48
|
divcld |
|
109 |
107
|
abscld |
|
110 |
67 70
|
remulcld |
|
111 |
105
|
recnd |
|
112 |
111
|
abscld |
|
113 |
5 112
|
fsumrecl |
|
114 |
5 111
|
fsumabs |
|
115 |
70
|
adantr |
|
116 |
10 115
|
remulcld |
|
117 |
104
|
recnd |
|
118 |
50 117
|
absmuld |
|
119 |
|
vmage0 |
|
120 |
7 119
|
syl |
|
121 |
9 37 120
|
divge0d |
|
122 |
10 121
|
absidd |
|
123 |
122
|
oveq1d |
|
124 |
118 123
|
eqtrd |
|
125 |
117
|
abscld |
|
126 |
|
fveq2 |
|
127 |
|
id |
|
128 |
126 127
|
oveq12d |
|
129 |
128
|
cbvsumv |
|
130 |
|
fveq2 |
|
131 |
130
|
oveq2d |
|
132 |
131
|
sumeq1d |
|
133 |
129 132
|
eqtrid |
|
134 |
|
fveq2 |
|
135 |
133 134
|
oveq12d |
|
136 |
135
|
fveq2d |
|
137 |
136
|
breq1d |
|
138 |
2
|
ad2antrr |
|
139 |
38
|
rpred |
|
140 |
7
|
nncnd |
|
141 |
140
|
mulid2d |
|
142 |
|
fznnfl |
|
143 |
21 142
|
syl |
|
144 |
143
|
simplbda |
|
145 |
141 144
|
eqbrtrd |
|
146 |
|
1red |
|
147 |
21
|
adantr |
|
148 |
146 147 37
|
lemuldivd |
|
149 |
145 148
|
mpbid |
|
150 |
|
1re |
|
151 |
|
elicopnf |
|
152 |
150 151
|
ax-mp |
|
153 |
139 149 152
|
sylanbrc |
|
154 |
137 138 153
|
rspcdva |
|
155 |
125 115 10 121 154
|
lemul2ad |
|
156 |
124 155
|
eqbrtrd |
|
157 |
5 112 116 156
|
fsumle |
|
158 |
99
|
adantr |
|
159 |
5 158 50
|
fsummulc1 |
|
160 |
157 159
|
breqtrrd |
|
161 |
109 113 110 114 160
|
letrd |
|
162 |
109 110 25 161
|
lediv1dd |
|
163 |
107 47 48
|
absdivd |
|
164 |
25
|
rpge0d |
|
165 |
32 164
|
absidd |
|
166 |
165
|
oveq2d |
|
167 |
163 166
|
eqtrd |
|
168 |
5 10 121
|
fsumge0 |
|
169 |
67 25 168
|
divge0d |
|
170 |
1
|
adantr |
|
171 |
170
|
rpge0d |
|
172 |
68 70 169 171
|
mulge0d |
|
173 |
103 172
|
absidd |
|
174 |
77 158 47 48
|
div23d |
|
175 |
173 174
|
eqtr4d |
|
176 |
162 167 175
|
3brtr4d |
|
177 |
176
|
adantrr |
|
178 |
66 102 103 108 177
|
o1le |
|
179 |
65 178
|
eqeltrrd |
|
180 |
35 44 179
|
o1dif |
|
181 |
4 180
|
mpbird |
|