Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
The Prime Number Theorem
2vmadivsumlem
Next ⟩
2vmadivsum
Metamath Proof Explorer
Ascii
Unicode
Theorem
2vmadivsumlem
Description:
Lemma for
2vmadivsum
.
(Contributed by
Mario Carneiro
, 30-May-2016)
Ref
Expression
Hypotheses
2vmadivsum.1
⊢
φ
→
A
∈
ℝ
+
2vmadivsum.2
⊢
φ
→
∀
y
∈
1
+∞
∑
i
=
1
y
Λ
i
i
−
log
y
≤
A
Assertion
2vmadivsumlem
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
−
log
x
2
∈
𝑂
1
Proof
Step
Hyp
Ref
Expression
1
2vmadivsum.1
⊢
φ
→
A
∈
ℝ
+
2
2vmadivsum.2
⊢
φ
→
∀
y
∈
1
+∞
∑
i
=
1
y
Λ
i
i
−
log
y
≤
A
3
vmalogdivsum2
⊢
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
−
log
x
2
∈
𝑂
1
4
3
a1i
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
−
log
x
2
∈
𝑂
1
5
fzfid
⊢
φ
∧
x
∈
1
+∞
→
1
…
x
∈
Fin
6
elfznn
⊢
n
∈
1
…
x
→
n
∈
ℕ
7
6
adantl
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
∈
ℕ
8
vmacl
⊢
n
∈
ℕ
→
Λ
n
∈
ℝ
9
7
8
syl
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
∈
ℝ
10
9
7
nndivred
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∈
ℝ
11
fzfid
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
…
x
n
∈
Fin
12
elfznn
⊢
m
∈
1
…
x
n
→
m
∈
ℕ
13
12
adantl
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
m
∈
ℕ
14
vmacl
⊢
m
∈
ℕ
→
Λ
m
∈
ℝ
15
13
14
syl
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
Λ
m
∈
ℝ
16
15
13
nndivred
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
Λ
m
m
∈
ℝ
17
11
16
fsumrecl
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
Λ
m
m
∈
ℝ
18
10
17
remulcld
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
∈
ℝ
19
5
18
fsumrecl
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
∈
ℝ
20
elioore
⊢
x
∈
1
+∞
→
x
∈
ℝ
21
20
adantl
⊢
φ
∧
x
∈
1
+∞
→
x
∈
ℝ
22
eliooord
⊢
x
∈
1
+∞
→
1
<
x
∧
x
<
+∞
23
22
adantl
⊢
φ
∧
x
∈
1
+∞
→
1
<
x
∧
x
<
+∞
24
23
simpld
⊢
φ
∧
x
∈
1
+∞
→
1
<
x
25
21
24
rplogcld
⊢
φ
∧
x
∈
1
+∞
→
log
x
∈
ℝ
+
26
19
25
rerpdivcld
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
∈
ℝ
27
1rp
⊢
1
∈
ℝ
+
28
27
a1i
⊢
φ
∧
x
∈
1
+∞
→
1
∈
ℝ
+
29
1red
⊢
φ
∧
x
∈
1
+∞
→
1
∈
ℝ
30
29
21
24
ltled
⊢
φ
∧
x
∈
1
+∞
→
1
≤
x
31
21
28
30
rpgecld
⊢
φ
∧
x
∈
1
+∞
→
x
∈
ℝ
+
32
31
relogcld
⊢
φ
∧
x
∈
1
+∞
→
log
x
∈
ℝ
33
32
rehalfcld
⊢
φ
∧
x
∈
1
+∞
→
log
x
2
∈
ℝ
34
26
33
resubcld
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
−
log
x
2
∈
ℝ
35
34
recnd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
−
log
x
2
∈
ℂ
36
31
adantr
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
x
∈
ℝ
+
37
7
nnrpd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
∈
ℝ
+
38
36
37
rpdivcld
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
x
n
∈
ℝ
+
39
38
relogcld
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
log
x
n
∈
ℝ
40
10
39
remulcld
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
log
x
n
∈
ℝ
41
5
40
fsumrecl
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
n
∈
ℝ
42
41
25
rerpdivcld
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
∈
ℝ
43
42
33
resubcld
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
−
log
x
2
∈
ℝ
44
43
recnd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
−
log
x
2
∈
ℂ
45
19
recnd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
∈
ℂ
46
41
recnd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
n
∈
ℂ
47
32
recnd
⊢
φ
∧
x
∈
1
+∞
→
log
x
∈
ℂ
48
25
rpne0d
⊢
φ
∧
x
∈
1
+∞
→
log
x
≠
0
49
45
46
47
48
divsubdird
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
=
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
−
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
50
10
recnd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∈
ℂ
51
17
recnd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
Λ
m
m
∈
ℂ
52
39
recnd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
log
x
n
∈
ℂ
53
50
51
52
subdid
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
=
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
Λ
n
n
log
x
n
54
53
sumeq2dv
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
=
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
Λ
n
n
log
x
n
55
18
recnd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
∈
ℂ
56
40
recnd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
log
x
n
∈
ℂ
57
5
55
56
fsumsub
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
Λ
n
n
log
x
n
=
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
∑
n
=
1
x
Λ
n
n
log
x
n
58
54
57
eqtrd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
=
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
∑
n
=
1
x
Λ
n
n
log
x
n
59
58
oveq1d
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
=
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
60
26
recnd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
∈
ℂ
61
42
recnd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
∈
ℂ
62
33
recnd
⊢
φ
∧
x
∈
1
+∞
→
log
x
2
∈
ℂ
63
60
61
62
nnncan2d
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
-
log
x
2
-
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
−
log
x
2
=
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
−
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
64
49
59
63
3eqtr4d
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
=
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
-
log
x
2
-
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
−
log
x
2
65
64
mpteq2dva
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
=
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
-
log
x
2
-
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
−
log
x
2
66
1red
⊢
φ
→
1
∈
ℝ
67
5
10
fsumrecl
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∈
ℝ
68
67
25
rerpdivcld
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
∈
ℝ
69
1
rpred
⊢
φ
→
A
∈
ℝ
70
69
adantr
⊢
φ
∧
x
∈
1
+∞
→
A
∈
ℝ
71
ioossre
⊢
1
+∞
⊆
ℝ
72
1cnd
⊢
φ
→
1
∈
ℂ
73
o1const
⊢
1
+∞
⊆
ℝ
∧
1
∈
ℂ
→
x
∈
1
+∞
⟼
1
∈
𝑂
1
74
71
72
73
sylancr
⊢
φ
→
x
∈
1
+∞
⟼
1
∈
𝑂
1
75
68
recnd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
∈
ℂ
76
1cnd
⊢
φ
∧
x
∈
1
+∞
→
1
∈
ℂ
77
67
recnd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∈
ℂ
78
77
47
47
48
divsubdird
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
−
log
x
log
x
=
∑
n
=
1
x
Λ
n
n
log
x
−
log
x
log
x
79
77
47
subcld
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
−
log
x
∈
ℂ
80
79
47
48
divrecd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
−
log
x
log
x
=
∑
n
=
1
x
Λ
n
n
−
log
x
1
log
x
81
47
48
dividd
⊢
φ
∧
x
∈
1
+∞
→
log
x
log
x
=
1
82
81
oveq2d
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
−
log
x
log
x
=
∑
n
=
1
x
Λ
n
n
log
x
−
1
83
78
80
82
3eqtr3d
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
−
log
x
1
log
x
=
∑
n
=
1
x
Λ
n
n
log
x
−
1
84
83
mpteq2dva
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
−
log
x
1
log
x
=
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
log
x
−
1
85
67
32
resubcld
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
−
log
x
∈
ℝ
86
29
25
rerpdivcld
⊢
φ
∧
x
∈
1
+∞
→
1
log
x
∈
ℝ
87
31
ex
⊢
φ
→
x
∈
1
+∞
→
x
∈
ℝ
+
88
87
ssrdv
⊢
φ
→
1
+∞
⊆
ℝ
+
89
vmadivsum
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
Λ
n
n
−
log
x
∈
𝑂
1
90
89
a1i
⊢
φ
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
Λ
n
n
−
log
x
∈
𝑂
1
91
88
90
o1res2
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
−
log
x
∈
𝑂
1
92
divlogrlim
⊢
x
∈
1
+∞
⟼
1
log
x
⇝
ℝ
0
93
rlimo1
⊢
x
∈
1
+∞
⟼
1
log
x
⇝
ℝ
0
→
x
∈
1
+∞
⟼
1
log
x
∈
𝑂
1
94
92
93
mp1i
⊢
φ
→
x
∈
1
+∞
⟼
1
log
x
∈
𝑂
1
95
85
86
91
94
o1mul2
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
−
log
x
1
log
x
∈
𝑂
1
96
84
95
eqeltrrd
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
log
x
−
1
∈
𝑂
1
97
75
76
96
o1dif
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
log
x
∈
𝑂
1
↔
x
∈
1
+∞
⟼
1
∈
𝑂
1
98
74
97
mpbird
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
log
x
∈
𝑂
1
99
69
recnd
⊢
φ
→
A
∈
ℂ
100
o1const
⊢
1
+∞
⊆
ℝ
∧
A
∈
ℂ
→
x
∈
1
+∞
⟼
A
∈
𝑂
1
101
71
99
100
sylancr
⊢
φ
→
x
∈
1
+∞
⟼
A
∈
𝑂
1
102
68
70
98
101
o1mul2
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
log
x
A
∈
𝑂
1
103
68
70
remulcld
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
A
∈
ℝ
104
17
39
resubcld
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
∈
ℝ
105
10
104
remulcld
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
∈
ℝ
106
5
105
fsumrecl
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
∈
ℝ
107
106
recnd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
∈
ℂ
108
107
47
48
divcld
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
∈
ℂ
109
107
abscld
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
∈
ℝ
110
67
70
remulcld
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
A
∈
ℝ
111
105
recnd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
∈
ℂ
112
111
abscld
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
∈
ℝ
113
5
112
fsumrecl
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
∈
ℝ
114
5
111
fsumabs
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
≤
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
115
70
adantr
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
A
∈
ℝ
116
10
115
remulcld
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
A
∈
ℝ
117
104
recnd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
∈
ℂ
118
50
117
absmuld
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
=
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
119
vmage0
⊢
n
∈
ℕ
→
0
≤
Λ
n
120
7
119
syl
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
0
≤
Λ
n
121
9
37
120
divge0d
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
0
≤
Λ
n
n
122
10
121
absidd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
=
Λ
n
n
123
122
oveq1d
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
=
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
124
118
123
eqtrd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
=
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
125
117
abscld
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
∈
ℝ
126
fveq2
⊢
i
=
m
→
Λ
i
=
Λ
m
127
id
⊢
i
=
m
→
i
=
m
128
126
127
oveq12d
⊢
i
=
m
→
Λ
i
i
=
Λ
m
m
129
128
cbvsumv
⊢
∑
i
=
1
y
Λ
i
i
=
∑
m
=
1
y
Λ
m
m
130
fveq2
⊢
y
=
x
n
→
y
=
x
n
131
130
oveq2d
⊢
y
=
x
n
→
1
…
y
=
1
…
x
n
132
131
sumeq1d
⊢
y
=
x
n
→
∑
m
=
1
y
Λ
m
m
=
∑
m
=
1
x
n
Λ
m
m
133
129
132
eqtrid
⊢
y
=
x
n
→
∑
i
=
1
y
Λ
i
i
=
∑
m
=
1
x
n
Λ
m
m
134
fveq2
⊢
y
=
x
n
→
log
y
=
log
x
n
135
133
134
oveq12d
⊢
y
=
x
n
→
∑
i
=
1
y
Λ
i
i
−
log
y
=
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
136
135
fveq2d
⊢
y
=
x
n
→
∑
i
=
1
y
Λ
i
i
−
log
y
=
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
137
136
breq1d
⊢
y
=
x
n
→
∑
i
=
1
y
Λ
i
i
−
log
y
≤
A
↔
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
≤
A
138
2
ad2antrr
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∀
y
∈
1
+∞
∑
i
=
1
y
Λ
i
i
−
log
y
≤
A
139
38
rpred
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
x
n
∈
ℝ
140
7
nncnd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
∈
ℂ
141
140
mullidd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
n
=
n
142
fznnfl
⊢
x
∈
ℝ
→
n
∈
1
…
x
↔
n
∈
ℕ
∧
n
≤
x
143
21
142
syl
⊢
φ
∧
x
∈
1
+∞
→
n
∈
1
…
x
↔
n
∈
ℕ
∧
n
≤
x
144
143
simplbda
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
≤
x
145
141
144
eqbrtrd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
n
≤
x
146
1red
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
∈
ℝ
147
21
adantr
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
x
∈
ℝ
148
146
147
37
lemuldivd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
n
≤
x
↔
1
≤
x
n
149
145
148
mpbid
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
≤
x
n
150
1re
⊢
1
∈
ℝ
151
elicopnf
⊢
1
∈
ℝ
→
x
n
∈
1
+∞
↔
x
n
∈
ℝ
∧
1
≤
x
n
152
150
151
ax-mp
⊢
x
n
∈
1
+∞
↔
x
n
∈
ℝ
∧
1
≤
x
n
153
139
149
152
sylanbrc
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
x
n
∈
1
+∞
154
137
138
153
rspcdva
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
≤
A
155
125
115
10
121
154
lemul2ad
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
≤
Λ
n
n
A
156
124
155
eqbrtrd
⊢
φ
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
≤
Λ
n
n
A
157
5
112
116
156
fsumle
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
≤
∑
n
=
1
x
Λ
n
n
A
158
99
adantr
⊢
φ
∧
x
∈
1
+∞
→
A
∈
ℂ
159
5
158
50
fsummulc1
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
A
=
∑
n
=
1
x
Λ
n
n
A
160
157
159
breqtrrd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
≤
∑
n
=
1
x
Λ
n
n
A
161
109
113
110
114
160
letrd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
≤
∑
n
=
1
x
Λ
n
n
A
162
109
110
25
161
lediv1dd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
≤
∑
n
=
1
x
Λ
n
n
A
log
x
163
107
47
48
absdivd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
=
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
164
25
rpge0d
⊢
φ
∧
x
∈
1
+∞
→
0
≤
log
x
165
32
164
absidd
⊢
φ
∧
x
∈
1
+∞
→
log
x
=
log
x
166
165
oveq2d
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
=
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
167
163
166
eqtrd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
=
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
168
5
10
121
fsumge0
⊢
φ
∧
x
∈
1
+∞
→
0
≤
∑
n
=
1
x
Λ
n
n
169
67
25
168
divge0d
⊢
φ
∧
x
∈
1
+∞
→
0
≤
∑
n
=
1
x
Λ
n
n
log
x
170
1
adantr
⊢
φ
∧
x
∈
1
+∞
→
A
∈
ℝ
+
171
170
rpge0d
⊢
φ
∧
x
∈
1
+∞
→
0
≤
A
172
68
70
169
171
mulge0d
⊢
φ
∧
x
∈
1
+∞
→
0
≤
∑
n
=
1
x
Λ
n
n
log
x
A
173
103
172
absidd
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
A
=
∑
n
=
1
x
Λ
n
n
log
x
A
174
77
158
47
48
div23d
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
A
log
x
=
∑
n
=
1
x
Λ
n
n
log
x
A
175
173
174
eqtr4d
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
log
x
A
=
∑
n
=
1
x
Λ
n
n
A
log
x
176
162
167
175
3brtr4d
⊢
φ
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
≤
∑
n
=
1
x
Λ
n
n
log
x
A
177
176
adantrr
⊢
φ
∧
x
∈
1
+∞
∧
1
≤
x
→
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
≤
∑
n
=
1
x
Λ
n
n
log
x
A
178
66
102
103
108
177
o1le
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
−
log
x
n
log
x
∈
𝑂
1
179
65
178
eqeltrrd
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
-
log
x
2
-
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
−
log
x
2
∈
𝑂
1
180
35
44
179
o1dif
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
−
log
x
2
∈
𝑂
1
↔
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
log
x
n
log
x
−
log
x
2
∈
𝑂
1
181
4
180
mpbird
⊢
φ
→
x
∈
1
+∞
⟼
∑
n
=
1
x
Λ
n
n
∑
m
=
1
x
n
Λ
m
m
log
x
−
log
x
2
∈
𝑂
1