Metamath Proof Explorer


Theorem chebbnd1lem1

Description: Lemma for chebbnd1 : show a lower bound on ppi ( x ) at even integers using similar techniques to those used to prove bpos . (Note that the expression K is actually equal to 2 x. N , but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 , which shows that each term in the expansion ( ( 2 x. N )C N ) = prod p e. Prime ( p ^ ( p pCnt ( ( 2 x. N )C N ) ) ) is at most 2 x. N , so that the sum really only has nonzero elements up to 2 x. N , and since each term is at most 2 x. N , after taking logs we get the inequality ppi ( 2 x. N ) x. log ( 2 x. N ) < log ( ( 2 x. N ) _C N ) , and bclbnd finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014) (Revised by Mario Carneiro, 15-Apr-2016)

Ref Expression
Hypothesis chebbnd1lem1.1 K=if2 N(2 NN)2 N(2 NN)
Assertion chebbnd1lem1 N4log4NN<π_2 Nlog2 N

Proof

Step Hyp Ref Expression
1 chebbnd1lem1.1 K=if2 N(2 NN)2 N(2 NN)
2 4nn 4
3 eluznn 4N4N
4 2 3 mpan N4N
5 4 nnnn0d N4N0
6 nnexpcl 4N04N
7 2 5 6 sylancr N44N
8 7 nnrpd N44N+
9 4 nnrpd N4N+
10 8 9 rpdivcld N44NN+
11 10 relogcld N4log4NN
12 fzctr N0N02 N
13 5 12 syl N4N02 N
14 bccl2 N02 N(2 NN)
15 13 14 syl N4(2 NN)
16 15 nnrpd N4(2 NN)+
17 16 relogcld N4log(2 NN)
18 2z 2
19 eluzelz N4N
20 zmulcl 2N2 N
21 18 19 20 sylancr N42 N
22 21 zred N42 N
23 ppicl 2 Nπ_2 N0
24 22 23 syl N4π_2 N0
25 24 nn0red N4π_2 N
26 2nn 2
27 nnmulcl 2N2 N
28 26 4 27 sylancr N42 N
29 28 nnrpd N42 N+
30 29 relogcld N4log2 N
31 25 30 remulcld N4π_2 Nlog2 N
32 bclbnd N44NN<(2 NN)
33 logltb 4NN+(2 NN)+4NN<(2 NN)log4NN<log(2 NN)
34 10 16 33 syl2anc N44NN<(2 NN)log4NN<log(2 NN)
35 32 34 mpbid N4log4NN<log(2 NN)
36 28 15 ifcld N4if2 N(2 NN)2 N(2 NN)
37 1 36 eqeltrid N4K
38 37 nnred N4K
39 ppicl Kπ_K0
40 38 39 syl N4π_K0
41 40 nn0red N4π_K
42 41 30 remulcld N4π_Klog2 N
43 fzfid N41KFin
44 inss1 1K1K
45 ssfi 1KFin1K1K1KFin
46 43 44 45 sylancl N41KFin
47 37 nnzd N4K
48 15 nnzd N4(2 NN)
49 15 nnred N4(2 NN)
50 min2 2 N(2 NN)if2 N(2 NN)2 N(2 NN)(2 NN)
51 22 49 50 syl2anc N4if2 N(2 NN)2 N(2 NN)(2 NN)
52 1 51 eqbrtrid N4K(2 NN)
53 eluz2 (2 NN)KK(2 NN)K(2 NN)
54 47 48 52 53 syl3anbrc N4(2 NN)K
55 fzss2 (2 NN)K1K1(2 NN)
56 54 55 syl N41K1(2 NN)
57 56 ssrind N41K1(2 NN)
58 57 sselda N4k1Kk1(2 NN)
59 simpr N4k1(2 NN)k1(2 NN)
60 59 elin1d N4k1(2 NN)k1(2 NN)
61 elfznn k1(2 NN)k
62 60 61 syl N4k1(2 NN)k
63 59 elin2d N4k1(2 NN)k
64 15 adantr N4k1(2 NN)(2 NN)
65 63 64 pccld N4k1(2 NN)kpCnt(2 NN)0
66 62 65 nnexpcld N4k1(2 NN)kkpCnt(2 NN)
67 66 nnrpd N4k1(2 NN)kkpCnt(2 NN)+
68 67 relogcld N4k1(2 NN)logkkpCnt(2 NN)
69 58 68 syldan N4k1KlogkkpCnt(2 NN)
70 30 adantr N4k1Klog2 N
71 elinel2 k1Kk
72 bposlem1 NkkkpCnt(2 NN)2 N
73 4 71 72 syl2an N4k1KkkpCnt(2 NN)2 N
74 58 67 syldan N4k1KkkpCnt(2 NN)+
75 74 reeflogd N4k1KelogkkpCnt(2 NN)=kkpCnt(2 NN)
76 29 adantr N4k1K2 N+
77 76 reeflogd N4k1Kelog2 N=2 N
78 73 75 77 3brtr4d N4k1KelogkkpCnt(2 NN)elog2 N
79 efle logkkpCnt(2 NN)log2 NlogkkpCnt(2 NN)log2 NelogkkpCnt(2 NN)elog2 N
80 69 70 79 syl2anc N4k1KlogkkpCnt(2 NN)log2 NelogkkpCnt(2 NN)elog2 N
81 78 80 mpbird N4k1KlogkkpCnt(2 NN)log2 N
82 46 69 70 81 fsumle N4k1KlogkkpCnt(2 NN)k1Klog2 N
83 68 recnd N4k1(2 NN)logkkpCnt(2 NN)
84 58 83 syldan N4k1KlogkkpCnt(2 NN)
85 eldifn k1(2 NN)1K¬k1K
86 85 adantl N4k1(2 NN)1K¬k1K
87 simpr N4k1(2 NN)1Kk1(2 NN)1K
88 87 eldifad N4k1(2 NN)1Kk1(2 NN)
89 88 elin1d N4k1(2 NN)1Kk1(2 NN)
90 89 61 syl N4k1(2 NN)1Kk
91 90 adantrr N4k1(2 NN)1KkpCnt(2 NN)k
92 91 nnred N4k1(2 NN)1KkpCnt(2 NN)k
93 88 66 syldan N4k1(2 NN)1KkkpCnt(2 NN)
94 93 nnred N4k1(2 NN)1KkkpCnt(2 NN)
95 94 adantrr N4k1(2 NN)1KkpCnt(2 NN)kkpCnt(2 NN)
96 22 adantr N4k1(2 NN)1KkpCnt(2 NN)2 N
97 91 nncnd N4k1(2 NN)1KkpCnt(2 NN)k
98 97 exp1d N4k1(2 NN)1KkpCnt(2 NN)k1=k
99 91 nnge1d N4k1(2 NN)1KkpCnt(2 NN)1k
100 simprr N4k1(2 NN)1KkpCnt(2 NN)kpCnt(2 NN)
101 nnuz =1
102 100 101 eleqtrdi N4k1(2 NN)1KkpCnt(2 NN)kpCnt(2 NN)1
103 92 99 102 leexp2ad N4k1(2 NN)1KkpCnt(2 NN)k1kkpCnt(2 NN)
104 98 103 eqbrtrrd N4k1(2 NN)1KkpCnt(2 NN)kkkpCnt(2 NN)
105 4 adantr N4k1(2 NN)1KkpCnt(2 NN)N
106 88 elin2d N4k1(2 NN)1Kk
107 106 adantrr N4k1(2 NN)1KkpCnt(2 NN)k
108 105 107 72 syl2anc N4k1(2 NN)1KkpCnt(2 NN)kkpCnt(2 NN)2 N
109 92 95 96 104 108 letrd N4k1(2 NN)1KkpCnt(2 NN)k2 N
110 elfzle2 k1(2 NN)k(2 NN)
111 89 110 syl N4k1(2 NN)1Kk(2 NN)
112 111 adantrr N4k1(2 NN)1KkpCnt(2 NN)k(2 NN)
113 49 adantr N4k1(2 NN)1KkpCnt(2 NN)(2 NN)
114 lemin k2 N(2 NN)kif2 N(2 NN)2 N(2 NN)k2 Nk(2 NN)
115 92 96 113 114 syl3anc N4k1(2 NN)1KkpCnt(2 NN)kif2 N(2 NN)2 N(2 NN)k2 Nk(2 NN)
116 109 112 115 mpbir2and N4k1(2 NN)1KkpCnt(2 NN)kif2 N(2 NN)2 N(2 NN)
117 116 1 breqtrrdi N4k1(2 NN)1KkpCnt(2 NN)kK
118 37 adantr N4k1(2 NN)1KkpCnt(2 NN)K
119 118 nnzd N4k1(2 NN)1KkpCnt(2 NN)K
120 fznn Kk1KkkK
121 119 120 syl N4k1(2 NN)1KkpCnt(2 NN)k1KkkK
122 91 117 121 mpbir2and N4k1(2 NN)1KkpCnt(2 NN)k1K
123 122 107 elind N4k1(2 NN)1KkpCnt(2 NN)k1K
124 123 expr N4k1(2 NN)1KkpCnt(2 NN)k1K
125 86 124 mtod N4k1(2 NN)1K¬kpCnt(2 NN)
126 88 65 syldan N4k1(2 NN)1KkpCnt(2 NN)0
127 elnn0 kpCnt(2 NN)0kpCnt(2 NN)kpCnt(2 NN)=0
128 126 127 sylib N4k1(2 NN)1KkpCnt(2 NN)kpCnt(2 NN)=0
129 128 ord N4k1(2 NN)1K¬kpCnt(2 NN)kpCnt(2 NN)=0
130 125 129 mpd N4k1(2 NN)1KkpCnt(2 NN)=0
131 130 oveq2d N4k1(2 NN)1KkkpCnt(2 NN)=k0
132 90 nncnd N4k1(2 NN)1Kk
133 132 exp0d N4k1(2 NN)1Kk0=1
134 131 133 eqtrd N4k1(2 NN)1KkkpCnt(2 NN)=1
135 134 fveq2d N4k1(2 NN)1KlogkkpCnt(2 NN)=log1
136 log1 log1=0
137 135 136 eqtrdi N4k1(2 NN)1KlogkkpCnt(2 NN)=0
138 fzfid N41(2 NN)Fin
139 inss1 1(2 NN)1(2 NN)
140 ssfi 1(2 NN)Fin1(2 NN)1(2 NN)1(2 NN)Fin
141 138 139 140 sylancl N41(2 NN)Fin
142 57 84 137 141 fsumss N4k1KlogkkpCnt(2 NN)=k1(2 NN)logkkpCnt(2 NN)
143 62 nnrpd N4k1(2 NN)k+
144 65 nn0zd N4k1(2 NN)kpCnt(2 NN)
145 relogexp k+kpCnt(2 NN)logkkpCnt(2 NN)=kpCnt(2 NN)logk
146 143 144 145 syl2anc N4k1(2 NN)logkkpCnt(2 NN)=kpCnt(2 NN)logk
147 146 sumeq2dv N4k1(2 NN)logkkpCnt(2 NN)=k1(2 NN)kpCnt(2 NN)logk
148 pclogsum (2 NN)k1(2 NN)kpCnt(2 NN)logk=log(2 NN)
149 15 148 syl N4k1(2 NN)kpCnt(2 NN)logk=log(2 NN)
150 142 147 149 3eqtrd N4k1KlogkkpCnt(2 NN)=log(2 NN)
151 30 recnd N4log2 N
152 fsumconst 1KFinlog2 Nk1Klog2 N=1Klog2 N
153 46 151 152 syl2anc N4k1Klog2 N=1Klog2 N
154 2eluzge1 21
155 ppival2g K21π_K=1K
156 47 154 155 sylancl N4π_K=1K
157 156 oveq1d N4π_Klog2 N=1Klog2 N
158 153 157 eqtr4d N4k1Klog2 N=π_Klog2 N
159 82 150 158 3brtr3d N4log(2 NN)π_Klog2 N
160 min1 2 N(2 NN)if2 N(2 NN)2 N(2 NN)2 N
161 22 49 160 syl2anc N4if2 N(2 NN)2 N(2 NN)2 N
162 1 161 eqbrtrid N4K2 N
163 ppiwordi K2 NK2 Nπ_Kπ_2 N
164 38 22 162 163 syl3anc N4π_Kπ_2 N
165 1red N41
166 2re 2
167 166 a1i N42
168 1lt2 1<2
169 168 a1i N41<2
170 2t1e2 21=2
171 4 nnge1d N41N
172 eluzelre N4N
173 2pos 0<2
174 166 173 pm3.2i 20<2
175 174 a1i N420<2
176 lemul2 1N20<21N212 N
177 165 172 175 176 syl3anc N41N212 N
178 171 177 mpbid N4212 N
179 170 178 eqbrtrrid N422 N
180 165 167 22 169 179 ltletrd N41<2 N
181 22 180 rplogcld N4log2 N+
182 41 25 181 lemul1d N4π_Kπ_2 Nπ_Klog2 Nπ_2 Nlog2 N
183 164 182 mpbid N4π_Klog2 Nπ_2 Nlog2 N
184 17 42 31 159 183 letrd N4log(2 NN)π_2 Nlog2 N
185 11 17 31 35 184 ltletrd N4log4NN<π_2 Nlog2 N