Metamath Proof Explorer


Theorem chpub

Description: An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Assertion chpub A1AψAθA+AlogA

Proof

Step Hyp Ref Expression
1 chpcl AψA
2 1 adantr A1AψA
3 chtcl AθA
4 3 adantr A1AθA
5 2 4 resubcld A1AψAθA
6 simpl A1AA
7 0red A1A0
8 1red A1A1
9 0lt1 0<1
10 9 a1i A1A0<1
11 simpr A1A1A
12 7 8 6 10 11 ltletrd A1A0<A
13 6 12 elrpd A1AA+
14 13 rpge0d A1A0A
15 6 14 resqrtcld A1AA
16 ppifi A0AFin
17 15 16 syl A1A0AFin
18 13 adantr A1Ap0AA+
19 18 relogcld A1Ap0AlogA
20 17 19 fsumrecl A1Ap0AlogA
21 13 relogcld A1AlogA
22 15 21 remulcld A1AAlogA
23 ppifi A0AFin
24 23 adantr A1A0AFin
25 simpr A1Ap0Ap0A
26 25 elin2d A1Ap0Ap
27 prmnn pp
28 26 27 syl A1Ap0Ap
29 28 nnrpd A1Ap0Ap+
30 29 relogcld A1Ap0Alogp
31 21 adantr A1Ap0AlogA
32 28 nnred A1Ap0Ap
33 prmuz2 pp2
34 26 33 syl A1Ap0Ap2
35 eluz2gt1 p21<p
36 34 35 syl A1Ap0A1<p
37 32 36 rplogcld A1Ap0Alogp+
38 31 37 rerpdivcld A1Ap0AlogAlogp
39 reflcl logAlogplogAlogp
40 38 39 syl A1Ap0AlogAlogp
41 30 40 remulcld A1Ap0AlogplogAlogp
42 41 recnd A1Ap0AlogplogAlogp
43 30 recnd A1Ap0Alogp
44 24 42 43 fsumsub A1Ap0AlogplogAlogplogp=p0AlogplogAlogpp0Alogp
45 0le0 00
46 45 a1i A1A00
47 8 6 6 14 11 lemul2ad A1AA1AA
48 6 recnd A1AA
49 48 sqsqrtd A1AA2=A
50 48 mulridd A1AA1=A
51 49 50 eqtr4d A1AA2=A1
52 48 sqvald A1AA2=AA
53 47 51 52 3brtr4d A1AA2A2
54 6 14 sqrtge0d A1A0A
55 15 6 54 14 le2sqd A1AAAA2A2
56 53 55 mpbird A1AAA
57 iccss 0A00AA0A0A
58 7 6 46 56 57 syl22anc A1A0A0A
59 58 ssrind A1A0A0A
60 59 sselda A1Ap0Ap0A
61 41 30 resubcld A1Ap0AlogplogAlogplogp
62 61 recnd A1Ap0AlogplogAlogplogp
63 60 62 syldan A1Ap0AlogplogAlogplogp
64 eldifi p0A0Ap0A
65 64 43 sylan2 A1Ap0A0Alogp
66 65 mullidd A1Ap0A0A1logp=logp
67 25 elin1d A1Ap0Ap0A
68 0re 0
69 6 adantr A1Ap0AA
70 elicc2 0Ap0Ap0ppA
71 68 69 70 sylancr A1Ap0Ap0Ap0ppA
72 67 71 mpbid A1Ap0Ap0ppA
73 72 simp3d A1Ap0ApA
74 64 73 sylan2 A1Ap0A0ApA
75 64 29 sylan2 A1Ap0A0Ap+
76 13 adantr A1Ap0A0AA+
77 75 76 logled A1Ap0A0ApAlogplogA
78 74 77 mpbid A1Ap0A0AlogplogA
79 66 78 eqbrtrd A1Ap0A0A1logplogA
80 1red A1Ap0A0A1
81 21 adantr A1Ap0A0AlogA
82 64 37 sylan2 A1Ap0A0Alogp+
83 80 81 82 lemuldivd A1Ap0A0A1logplogA1logAlogp
84 79 83 mpbid A1Ap0A0A1logAlogp
85 6 adantr A1Ap0A0AA
86 85 recnd A1Ap0A0AA
87 86 sqsqrtd A1Ap0A0AA2=A
88 eldifn p0A0A¬p0A
89 88 adantl A1Ap0A0A¬p0A
90 64 26 sylan2 A1Ap0A0Ap
91 elin p0Ap0Ap
92 91 rbaib pp0Ap0A
93 90 92 syl A1Ap0A0Ap0Ap0A
94 0red A1Ap0A0A0
95 15 adantr A1Ap0A0AA
96 64 28 sylan2 A1Ap0A0Ap
97 96 nnred A1Ap0A0Ap
98 75 rpge0d A1Ap0A0A0p
99 elicc2 0Ap0Ap0ppA
100 df-3an p0ppAp0ppA
101 99 100 bitrdi 0Ap0Ap0ppA
102 101 baibd 0Ap0pp0ApA
103 94 95 97 98 102 syl22anc A1Ap0A0Ap0ApA
104 93 103 bitrd A1Ap0A0Ap0ApA
105 89 104 mtbid A1Ap0A0A¬pA
106 95 97 ltnled A1Ap0A0AA<p¬pA
107 105 106 mpbird A1Ap0A0AA<p
108 54 adantr A1Ap0A0A0A
109 95 97 108 98 lt2sqd A1Ap0A0AA<pA2<p2
110 107 109 mpbid A1Ap0A0AA2<p2
111 87 110 eqbrtrrd A1Ap0A0AA<p2
112 96 nnsqcld A1Ap0A0Ap2
113 112 nnrpd A1Ap0A0Ap2+
114 logltb A+p2+A<p2logA<logp2
115 76 113 114 syl2anc A1Ap0A0AA<p2logA<logp2
116 111 115 mpbid A1Ap0A0AlogA<logp2
117 2z 2
118 relogexp p+2logp2=2logp
119 75 117 118 sylancl A1Ap0A0Alogp2=2logp
120 116 119 breqtrd A1Ap0A0AlogA<2logp
121 2re 2
122 121 a1i A1Ap0A0A2
123 81 122 82 ltdivmul2d A1Ap0A0AlogAlogp<2logA<2logp
124 120 123 mpbird A1Ap0A0AlogAlogp<2
125 df-2 2=1+1
126 124 125 breqtrdi A1Ap0A0AlogAlogp<1+1
127 64 38 sylan2 A1Ap0A0AlogAlogp
128 1z 1
129 flbi logAlogp1logAlogp=11logAlogplogAlogp<1+1
130 127 128 129 sylancl A1Ap0A0AlogAlogp=11logAlogplogAlogp<1+1
131 84 126 130 mpbir2and A1Ap0A0AlogAlogp=1
132 131 oveq2d A1Ap0A0AlogplogAlogp=logp1
133 65 mulridd A1Ap0A0Alogp1=logp
134 132 133 eqtrd A1Ap0A0AlogplogAlogp=logp
135 134 oveq1d A1Ap0A0AlogplogAlogplogp=logplogp
136 65 subidd A1Ap0A0Alogplogp=0
137 135 136 eqtrd A1Ap0A0AlogplogAlogplogp=0
138 59 63 137 24 fsumss A1Ap0AlogplogAlogplogp=p0AlogplogAlogplogp
139 chpval2 AψA=p0AlogplogAlogp
140 139 adantr A1AψA=p0AlogplogAlogp
141 chtval AθA=p0Alogp
142 141 adantr A1AθA=p0Alogp
143 140 142 oveq12d A1AψAθA=p0AlogplogAlogpp0Alogp
144 44 138 143 3eqtr4rd A1AψAθA=p0AlogplogAlogplogp
145 60 61 syldan A1Ap0AlogplogAlogplogp
146 60 41 syldan A1Ap0AlogplogAlogp
147 60 37 syldan A1Ap0Alogp+
148 147 rpge0d A1Ap0A0logp
149 simpr A1Ap0Ap0A
150 149 elin2d A1Ap0Ap
151 150 27 syl A1Ap0Ap
152 151 nnrpd A1Ap0Ap+
153 152 relogcld A1Ap0Alogp
154 146 153 subge02d A1Ap0A0logplogplogAlogplogplogplogAlogp
155 148 154 mpbid A1Ap0AlogplogAlogplogplogplogAlogp
156 60 38 syldan A1Ap0AlogAlogp
157 flle logAlogplogAlogplogAlogp
158 156 157 syl A1Ap0AlogAlogplogAlogp
159 60 40 syldan A1Ap0AlogAlogp
160 159 19 147 lemuldiv2d A1Ap0AlogplogAlogplogAlogAlogplogAlogp
161 158 160 mpbird A1Ap0AlogplogAlogplogA
162 145 146 19 155 161 letrd A1Ap0AlogplogAlogplogplogA
163 17 145 19 162 fsumle A1Ap0AlogplogAlogplogpp0AlogA
164 144 163 eqbrtrd A1AψAθAp0AlogA
165 21 recnd A1AlogA
166 fsumconst 0AFinlogAp0AlogA=0AlogA
167 17 165 166 syl2anc A1Ap0AlogA=0AlogA
168 hashcl 0AFin0A0
169 17 168 syl A1A0A0
170 169 nn0red A1A0A
171 logge0 A1A0logA
172 reflcl AA
173 15 172 syl A1AA
174 fzfid A1A1AFin
175 ppisval A0A=2A
176 15 175 syl A1A0A=2A
177 inss1 2A2A
178 2eluzge1 21
179 fzss1 212A1A
180 178 179 mp1i A1A2A1A
181 177 180 sstrid A1A2A1A
182 176 181 eqsstrd A1A0A1A
183 ssdomg 1AFin0A1A0A1A
184 174 182 183 sylc A1A0A1A
185 hashdom 0AFin1AFin0A1A0A1A
186 17 174 185 syl2anc A1A0A1A0A1A
187 184 186 mpbird A1A0A1A
188 flge0nn0 A0AA0
189 15 54 188 syl2anc A1AA0
190 hashfz1 A01A=A
191 189 190 syl A1A1A=A
192 187 191 breqtrd A1A0AA
193 flle AAA
194 15 193 syl A1AAA
195 170 173 15 192 194 letrd A1A0AA
196 170 15 21 171 195 lemul1ad A1A0AlogAAlogA
197 167 196 eqbrtrd A1Ap0AlogAAlogA
198 5 20 22 164 197 letrd A1AψAθAAlogA
199 2 4 22 lesubadd2d A1AψAθAAlogAψAθA+AlogA
200 198 199 mpbid A1AψAθA+AlogA