Metamath Proof Explorer


Theorem cnheibor

Description: Heine-Borel theorem for complex numbers. A subset of CC is compact iff it is closed and bounded. (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses cnheibor.2 J=TopOpenfld
cnheibor.3 T=J𝑡X
Assertion cnheibor XTCompXClsdJrxXxr

Proof

Step Hyp Ref Expression
1 cnheibor.2 J=TopOpenfld
2 cnheibor.3 T=J𝑡X
3 1 cnfldhaus JHaus
4 simpl XTCompX
5 simpr XTCompTComp
6 2 5 eqeltrrid XTCompJ𝑡XComp
7 1 cnfldtopon JTopOn
8 7 toponunii =J
9 8 hauscmp JHausXJ𝑡XCompXClsdJ
10 3 4 6 9 mp3an2i XTCompXClsdJ
11 1 cnfldtop JTop
12 8 restuni JTopXX=J𝑡X
13 11 4 12 sylancr XTCompX=J𝑡X
14 2 unieqi T=J𝑡X
15 13 14 eqtr4di XTCompX=T
16 15 eleq2d XTCompxXxT
17 16 biimpar XTCompxTxX
18 cnex V
19 ssexg XVXV
20 4 18 19 sylancl XTCompXV
21 20 adantr XTCompxXXV
22 cnxmet abs∞Met
23 0cnd XTCompxX0
24 4 sselda XTCompxXx
25 24 abscld XTCompxXx
26 peano2re xx+1
27 25 26 syl XTCompxXx+1
28 27 rexrd XTCompxXx+1*
29 1 cnfldtopn J=MetOpenabs
30 29 blopn abs∞Met0x+1*0ballabsx+1J
31 22 23 28 30 mp3an2i XTCompxX0ballabsx+1J
32 elrestr JTopXV0ballabsx+1J0ballabsx+1XJ𝑡X
33 11 21 31 32 mp3an2i XTCompxX0ballabsx+1XJ𝑡X
34 33 2 eleqtrrdi XTCompxX0ballabsx+1XT
35 0cn 0
36 eqid abs=abs
37 36 cnmetdval 0x0absx=0x
38 35 37 mpan x0absx=0x
39 df-neg x=0x
40 39 fveq2i x=0x
41 absneg xx=x
42 40 41 eqtr3id x0x=x
43 38 42 eqtrd x0absx=x
44 24 43 syl XTCompxX0absx=x
45 25 ltp1d XTCompxXx<x+1
46 44 45 eqbrtrd XTCompxX0absx<x+1
47 elbl abs∞Met0x+1*x0ballabsx+1x0absx<x+1
48 22 23 28 47 mp3an2i XTCompxXx0ballabsx+1x0absx<x+1
49 24 46 48 mpbir2and XTCompxXx0ballabsx+1
50 simpr XTCompxXxX
51 49 50 elind XTCompxXx0ballabsx+1X
52 24 absge0d XTCompxX0x
53 25 52 ge0p1rpd XTCompxXx+1+
54 eqid 0ballabsx+1X=0ballabsx+1X
55 oveq2 r=x+10ballabsr=0ballabsx+1
56 55 ineq1d r=x+10ballabsrX=0ballabsx+1X
57 56 rspceeqv x+1+0ballabsx+1X=0ballabsx+1Xr+0ballabsx+1X=0ballabsrX
58 53 54 57 sylancl XTCompxXr+0ballabsx+1X=0ballabsrX
59 eleq2 u=0ballabsx+1Xxux0ballabsx+1X
60 eqeq1 u=0ballabsx+1Xu=0ballabsrX0ballabsx+1X=0ballabsrX
61 60 rexbidv u=0ballabsx+1Xr+u=0ballabsrXr+0ballabsx+1X=0ballabsrX
62 59 61 anbi12d u=0ballabsx+1Xxur+u=0ballabsrXx0ballabsx+1Xr+0ballabsx+1X=0ballabsrX
63 62 rspcev 0ballabsx+1XTx0ballabsx+1Xr+0ballabsx+1X=0ballabsrXuTxur+u=0ballabsrX
64 34 51 58 63 syl12anc XTCompxXuTxur+u=0ballabsrX
65 17 64 syldan XTCompxTuTxur+u=0ballabsrX
66 65 ralrimiva XTCompxTuTxur+u=0ballabsrX
67 eqid T=T
68 oveq2 r=fu0ballabsr=0ballabsfu
69 68 ineq1d r=fu0ballabsrX=0ballabsfuX
70 69 eqeq2d r=fuu=0ballabsrXu=0ballabsfuX
71 67 70 cmpcovf TCompxTuTxur+u=0ballabsrXs𝒫TFinT=sff:s+usu=0ballabsfuX
72 5 66 71 syl2anc XTComps𝒫TFinT=sff:s+usu=0ballabsfuX
73 15 ad4antr XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurX=T
74 simpllr XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurT=s
75 73 74 eqtrd XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurX=s
76 75 eleq2d XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurxXxs
77 eluni2 xszsxz
78 76 77 bitrdi XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurxXzsxz
79 elssuni zszs
80 79 ad2antrl XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzzs
81 75 adantr XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzX=s
82 80 81 sseqtrrd XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzzX
83 simp-6l XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzX
84 82 83 sstrd XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzz
85 simprr XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzxz
86 84 85 sseldd XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzx
87 86 abscld XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzx
88 simplrl XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzr
89 simprl XTComps𝒫TFinT=sf:s+usu=0ballabsfuXf:s+
90 89 ad2antrr XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzf:s+
91 simprl XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzzs
92 90 91 ffvelcdmd XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzfz+
93 92 rpred XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzfz
94 86 43 syl XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxz0absx=x
95 id u=zu=z
96 fveq2 u=zfu=fz
97 96 oveq2d u=z0ballabsfu=0ballabsfz
98 97 ineq1d u=z0ballabsfuX=0ballabsfzX
99 95 98 eqeq12d u=zu=0ballabsfuXz=0ballabsfzX
100 simprr XTComps𝒫TFinT=sf:s+usu=0ballabsfuXusu=0ballabsfuX
101 100 ad2antrr XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzusu=0ballabsfuX
102 99 101 91 rspcdva XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzz=0ballabsfzX
103 85 102 eleqtrd XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzx0ballabsfzX
104 103 elin1d XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzx0ballabsfz
105 0cnd XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxz0
106 92 rpxrd XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzfz*
107 elbl abs∞Met0fz*x0ballabsfzx0absx<fz
108 22 105 106 107 mp3an2i XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzx0ballabsfzx0absx<fz
109 104 108 mpbid XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzx0absx<fz
110 109 simprd XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxz0absx<fz
111 94 110 eqbrtrrd XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzx<fz
112 96 breq1d u=zfurfzr
113 simplrr XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzusfur
114 112 113 91 rspcdva XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzfzr
115 87 93 88 111 114 ltletrd XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzx<r
116 87 88 115 ltled XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzxr
117 116 rexlimdvaa XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurzsxzxr
118 78 117 sylbid XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurxXxr
119 118 ralrimiv XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfurxXxr
120 simpllr XTComps𝒫TFinT=sf:s+usu=0ballabsfuXs𝒫TFin
121 120 elin2d XTComps𝒫TFinT=sf:s+usu=0ballabsfuXsFin
122 ffvelcdm f:s+usfu+
123 122 rpred f:s+usfu
124 123 ralrimiva f:s+usfu
125 124 ad2antrl XTComps𝒫TFinT=sf:s+usu=0ballabsfuXusfu
126 fimaxre3 sFinusfurusfur
127 121 125 126 syl2anc XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrusfur
128 119 127 reximddv XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrxXxr
129 128 ex XTComps𝒫TFinT=sf:s+usu=0ballabsfuXrxXxr
130 129 exlimdv XTComps𝒫TFinT=sff:s+usu=0ballabsfuXrxXxr
131 130 expimpd XTComps𝒫TFinT=sff:s+usu=0ballabsfuXrxXxr
132 131 rexlimdva XTComps𝒫TFinT=sff:s+usu=0ballabsfuXrxXxr
133 72 132 mpd XTComprxXxr
134 10 133 jca XTCompXClsdJrxXxr
135 eqid y,zy+iz=y,zy+iz
136 eqid y,zy+izrr×rr=y,zy+izrr×rr
137 1 2 135 136 cnheiborlem XClsdJrxXxrTComp
138 137 rexlimdvaa XClsdJrxXxrTComp
139 138 imp XClsdJrxXxrTComp
140 139 adantl XXClsdJrxXxrTComp
141 134 140 impbida XTCompXClsdJrxXxr