Metamath Proof Explorer


Theorem cvxsconn

Description: A convex subset of the complex numbers is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses cvxpconn.1 φS
cvxpconn.2 φxSySt01tx+1tyS
cvxpconn.3 J=TopOpenfld
cvxpconn.4 K=J𝑡S
Assertion cvxsconn φKSConn

Proof

Step Hyp Ref Expression
1 cvxpconn.1 φS
2 cvxpconn.2 φxSySt01tx+1tyS
3 cvxpconn.3 J=TopOpenfld
4 cvxpconn.4 K=J𝑡S
5 1 2 3 4 cvxpconn φKPConn
6 simprl φfIICnKf0=f1fIICnK
7 pconntop KPConnKTop
8 5 7 syl φKTop
9 8 adantr φfIICnKf0=f1KTop
10 eqid K=K
11 10 toptopon KTopKTopOnK
12 9 11 sylib φfIICnKf0=f1KTopOnK
13 iiuni 01=II
14 13 10 cnf fIICnKf:01K
15 6 14 syl φfIICnKf0=f1f:01K
16 0elunit 001
17 ffvelcdm f:01K001f0K
18 15 16 17 sylancl φfIICnKf0=f1f0K
19 eqid 01×f0=01×f0
20 19 pcoptcl KTopOnKf0K01×f0IICnK01×f00=f001×f01=f0
21 12 18 20 syl2anc φfIICnKf0=f101×f0IICnK01×f00=f001×f01=f0
22 21 simp1d φfIICnKf0=f101×f0IICnK
23 iitopon IITopOn01
24 23 a1i φfIICnKf0=f1IITopOn01
25 3 dfii3 II=J𝑡01
26 3 cnfldtopon JTopOn
27 26 a1i φfIICnKf0=f1JTopOn
28 unitssre 01
29 ax-resscn
30 28 29 sstri 01
31 30 a1i φfIICnKf0=f101
32 27 27 cnmpt2nd φfIICnKf0=f1z,ttJ×tJCnJ
33 25 27 31 25 27 31 32 cnmpt2res φfIICnKf0=f1z01,t01tII×tIICnJ
34 1 adantr φfIICnKf0=f1S
35 resttopon JTopOnSJ𝑡STopOnS
36 26 1 35 sylancr φJ𝑡STopOnS
37 4 36 eqeltrid φKTopOnS
38 toponuni KTopOnSS=K
39 37 38 syl φS=K
40 39 adantr φfIICnKf0=f1S=K
41 18 40 eleqtrrd φfIICnKf0=f1f0S
42 34 41 sseldd φfIICnKf0=f1f0
43 24 24 27 42 cnmpt2c φfIICnKf0=f1z01,t01f0II×tIICnJ
44 3 mulcn ×J×tJCnJ
45 44 a1i φfIICnKf0=f1×J×tJCnJ
46 24 24 33 43 45 cnmpt22f φfIICnKf0=f1z01,t01tf0II×tIICnJ
47 ax-1cn 1
48 47 a1i φfIICnKf0=f11
49 27 27 27 48 cnmpt2c φfIICnKf0=f1z,t1J×tJCnJ
50 3 subcn J×tJCnJ
51 50 a1i φfIICnKf0=f1J×tJCnJ
52 27 27 49 32 51 cnmpt22f φfIICnKf0=f1z,t1tJ×tJCnJ
53 25 27 31 25 27 31 52 cnmpt2res φfIICnKf0=f1z01,t011tII×tIICnJ
54 24 24 cnmpt1st φfIICnKf0=f1z01,t01zII×tIICnII
55 3 cnfldtop JTop
56 cnrest2r JTopIICnJ𝑡SIICnJ
57 55 56 ax-mp IICnJ𝑡SIICnJ
58 4 oveq2i IICnK=IICnJ𝑡S
59 6 58 eleqtrdi φfIICnKf0=f1fIICnJ𝑡S
60 57 59 sselid φfIICnKf0=f1fIICnJ
61 24 24 54 60 cnmpt21f φfIICnKf0=f1z01,t01fzII×tIICnJ
62 24 24 53 61 45 cnmpt22f φfIICnKf0=f1z01,t011tfzII×tIICnJ
63 3 addcn +J×tJCnJ
64 63 a1i φfIICnKf0=f1+J×tJCnJ
65 24 24 46 62 64 cnmpt22f φfIICnKf0=f1z01,t01tf0+1tfzII×tIICnJ
66 41 adantr φfIICnKf0=f1z01t01f0S
67 15 adantr φfIICnKf0=f1z01t01f:01K
68 simprl φfIICnKf0=f1z01t01z01
69 67 68 ffvelcdmd φfIICnKf0=f1z01t01fzK
70 40 adantr φfIICnKf0=f1z01t01S=K
71 69 70 eleqtrrd φfIICnKf0=f1z01t01fzS
72 2 3exp2 φxSySt01tx+1tyS
73 72 imp42 φxSySt01tx+1tyS
74 73 an32s φt01xSyStx+1tyS
75 74 ralrimivva φt01xSyStx+1tyS
76 75 ad2ant2rl φfIICnKf0=f1z01t01xSyStx+1tyS
77 oveq2 x=f0tx=tf0
78 77 oveq1d x=f0tx+1ty=tf0+1ty
79 78 eleq1d x=f0tx+1tyStf0+1tyS
80 oveq2 y=fz1ty=1tfz
81 80 oveq2d y=fztf0+1ty=tf0+1tfz
82 81 eleq1d y=fztf0+1tyStf0+1tfzS
83 79 82 rspc2va f0SfzSxSyStx+1tyStf0+1tfzS
84 66 71 76 83 syl21anc φfIICnKf0=f1z01t01tf0+1tfzS
85 84 ralrimivva φfIICnKf0=f1z01t01tf0+1tfzS
86 eqid z01,t01tf0+1tfz=z01,t01tf0+1tfz
87 86 fmpo z01t01tf0+1tfzSz01,t01tf0+1tfz:01×01S
88 85 87 sylib φfIICnKf0=f1z01,t01tf0+1tfz:01×01S
89 88 frnd φfIICnKf0=f1ranz01,t01tf0+1tfzS
90 cnrest2 JTopOnranz01,t01tf0+1tfzSSz01,t01tf0+1tfzII×tIICnJz01,t01tf0+1tfzII×tIICnJ𝑡S
91 27 89 34 90 syl3anc φfIICnKf0=f1z01,t01tf0+1tfzII×tIICnJz01,t01tf0+1tfzII×tIICnJ𝑡S
92 65 91 mpbid φfIICnKf0=f1z01,t01tf0+1tfzII×tIICnJ𝑡S
93 4 oveq2i II×tIICnK=II×tIICnJ𝑡S
94 92 93 eleqtrrdi φfIICnKf0=f1z01,t01tf0+1tfzII×tIICnK
95 simpr φfIICnKf0=f1s01s01
96 simpr z=st=0t=0
97 96 oveq1d z=st=0tf0=0f0
98 96 oveq2d z=st=01t=10
99 1m0e1 10=1
100 98 99 eqtrdi z=st=01t=1
101 simpl z=st=0z=s
102 101 fveq2d z=st=0fz=fs
103 100 102 oveq12d z=st=01tfz=1fs
104 97 103 oveq12d z=st=0tf0+1tfz=0f0+1fs
105 ovex 0f0+1fsV
106 104 86 105 ovmpoa s01001sz01,t01tf0+1tfz0=0f0+1fs
107 95 16 106 sylancl φfIICnKf0=f1s01sz01,t01tf0+1tfz0=0f0+1fs
108 42 adantr φfIICnKf0=f1s01f0
109 108 mul02d φfIICnKf0=f1s010f0=0
110 26 toponunii =J
111 13 110 cnf fIICnJf:01
112 60 111 syl φfIICnKf0=f1f:01
113 112 ffvelcdmda φfIICnKf0=f1s01fs
114 113 mullidd φfIICnKf0=f1s011fs=fs
115 109 114 oveq12d φfIICnKf0=f1s010f0+1fs=0+fs
116 113 addlidd φfIICnKf0=f1s010+fs=fs
117 107 115 116 3eqtrd φfIICnKf0=f1s01sz01,t01tf0+1tfz0=fs
118 1elunit 101
119 simpr z=st=1t=1
120 119 oveq1d z=st=1tf0=1f0
121 119 oveq2d z=st=11t=11
122 1m1e0 11=0
123 121 122 eqtrdi z=st=11t=0
124 simpl z=st=1z=s
125 124 fveq2d z=st=1fz=fs
126 123 125 oveq12d z=st=11tfz=0fs
127 120 126 oveq12d z=st=1tf0+1tfz=1f0+0fs
128 ovex 1f0+0fsV
129 127 86 128 ovmpoa s01101sz01,t01tf0+1tfz1=1f0+0fs
130 95 118 129 sylancl φfIICnKf0=f1s01sz01,t01tf0+1tfz1=1f0+0fs
131 108 mullidd φfIICnKf0=f1s011f0=f0
132 113 mul02d φfIICnKf0=f1s010fs=0
133 131 132 oveq12d φfIICnKf0=f1s011f0+0fs=f0+0
134 108 addridd φfIICnKf0=f1s01f0+0=f0
135 fvex f0V
136 135 fvconst2 s0101×f0s=f0
137 136 adantl φfIICnKf0=f1s0101×f0s=f0
138 134 137 eqtr4d φfIICnKf0=f1s01f0+0=01×f0s
139 130 133 138 3eqtrd φfIICnKf0=f1s01sz01,t01tf0+1tfz1=01×f0s
140 simpr z=0t=st=s
141 140 oveq1d z=0t=stf0=sf0
142 140 oveq2d z=0t=s1t=1s
143 simpl z=0t=sz=0
144 143 fveq2d z=0t=sfz=f0
145 142 144 oveq12d z=0t=s1tfz=1sf0
146 141 145 oveq12d z=0t=stf0+1tfz=sf0+1sf0
147 ovex sf0+1sf0V
148 146 86 147 ovmpoa 001s010z01,t01tf0+1tfzs=sf0+1sf0
149 16 95 148 sylancr φfIICnKf0=f1s010z01,t01tf0+1tfzs=sf0+1sf0
150 30 95 sselid φfIICnKf0=f1s01s
151 pncan3 s1s+1-s=1
152 150 47 151 sylancl φfIICnKf0=f1s01s+1-s=1
153 152 oveq1d φfIICnKf0=f1s01s+1-sf0=1f0
154 subcl 1s1s
155 47 150 154 sylancr φfIICnKf0=f1s011s
156 150 155 108 adddird φfIICnKf0=f1s01s+1-sf0=sf0+1sf0
157 153 156 131 3eqtr3d φfIICnKf0=f1s01sf0+1sf0=f0
158 149 157 eqtrd φfIICnKf0=f1s010z01,t01tf0+1tfzs=f0
159 simpr z=1t=st=s
160 159 oveq1d z=1t=stf0=sf0
161 159 oveq2d z=1t=s1t=1s
162 simpl z=1t=sz=1
163 162 fveq2d z=1t=sfz=f1
164 161 163 oveq12d z=1t=s1tfz=1sf1
165 160 164 oveq12d z=1t=stf0+1tfz=sf0+1sf1
166 ovex sf0+1sf1V
167 165 86 166 ovmpoa 101s011z01,t01tf0+1tfzs=sf0+1sf1
168 118 95 167 sylancr φfIICnKf0=f1s011z01,t01tf0+1tfzs=sf0+1sf1
169 simplrr φfIICnKf0=f1s01f0=f1
170 169 oveq2d φfIICnKf0=f1s011sf0=1sf1
171 170 oveq2d φfIICnKf0=f1s01sf0+1sf0=sf0+1sf1
172 157 171 169 3eqtr3d φfIICnKf0=f1s01sf0+1sf1=f1
173 168 172 eqtrd φfIICnKf0=f1s011z01,t01tf0+1tfzs=f1
174 6 22 94 117 139 158 173 isphtpy2d φfIICnKf0=f1z01,t01tf0+1tfzfPHtpyK01×f0
175 174 ne0d φfIICnKf0=f1fPHtpyK01×f0
176 isphtpc fphK01×f0fIICnK01×f0IICnKfPHtpyK01×f0
177 6 22 175 176 syl3anbrc φfIICnKf0=f1fphK01×f0
178 177 expr φfIICnKf0=f1fphK01×f0
179 178 ralrimiva φfIICnKf0=f1fphK01×f0
180 issconn KSConnKPConnfIICnKf0=f1fphK01×f0
181 5 179 180 sylanbrc φKSConn