| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|
| 2 |
|
rpvmasum.l |
|
| 3 |
|
rpvmasum.a |
|
| 4 |
|
rpvmasum2.g |
|
| 5 |
|
rpvmasum2.d |
|
| 6 |
|
rpvmasum2.1 |
|
| 7 |
|
rpvmasum2.w |
|
| 8 |
|
dchrisum0.b |
|
| 9 |
|
dchrisum0lem1.f |
|
| 10 |
|
dchrisum0.c |
|
| 11 |
|
dchrisum0.s |
|
| 12 |
|
dchrisum0.1 |
|
| 13 |
|
1red |
|
| 14 |
|
sumex |
|
| 15 |
14
|
a1i |
|
| 16 |
|
sumex |
|
| 17 |
16
|
a1i |
|
| 18 |
7
|
ssrab3 |
|
| 19 |
|
difss |
|
| 20 |
18 19
|
sstri |
|
| 21 |
20 8
|
sselid |
|
| 22 |
18 8
|
sselid |
|
| 23 |
|
eldifsni |
|
| 24 |
22 23
|
syl |
|
| 25 |
|
eqid |
|
| 26 |
1 2 3 4 5 6 21 24 25
|
dchrmusumlema |
|
| 27 |
3
|
adantr |
|
| 28 |
8
|
adantr |
|
| 29 |
10
|
adantr |
|
| 30 |
11
|
adantr |
|
| 31 |
12
|
adantr |
|
| 32 |
|
eqid |
|
| 33 |
32
|
divsqrsum |
|
| 34 |
32
|
divsqrsumf |
|
| 35 |
|
ax-resscn |
|
| 36 |
|
fss |
|
| 37 |
34 35 36
|
mp2an |
|
| 38 |
37
|
a1i |
|
| 39 |
|
rpsup |
|
| 40 |
39
|
a1i |
|
| 41 |
38 40
|
rlimdm |
|
| 42 |
33 41
|
mpbii |
|
| 43 |
42
|
adantr |
|
| 44 |
|
simprl |
|
| 45 |
|
simprrl |
|
| 46 |
|
simprrr |
|
| 47 |
1 2 27 4 5 6 7 28 9 29 30 31 32 43 25 44 45 46
|
dchrisum0lem2 |
|
| 48 |
47
|
rexlimdvaa |
|
| 49 |
48
|
exlimdv |
|
| 50 |
26 49
|
mpd |
|
| 51 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrisum0lem1 |
|
| 52 |
15 17 50 51
|
o1add2 |
|
| 53 |
|
ovexd |
|
| 54 |
|
fzfid |
|
| 55 |
|
fzfid |
|
| 56 |
21
|
ad2antrr |
|
| 57 |
|
elfzelz |
|
| 58 |
57
|
adantl |
|
| 59 |
4 1 5 2 56 58
|
dchrzrhcl |
|
| 60 |
59
|
adantr |
|
| 61 |
|
elfznn |
|
| 62 |
61
|
adantl |
|
| 63 |
62
|
nnrpd |
|
| 64 |
|
elfznn |
|
| 65 |
64
|
nnrpd |
|
| 66 |
|
rpmulcl |
|
| 67 |
63 65 66
|
syl2an |
|
| 68 |
67
|
rpsqrtcld |
|
| 69 |
68
|
rpcnd |
|
| 70 |
68
|
rpne0d |
|
| 71 |
60 69 70
|
divcld |
|
| 72 |
55 71
|
fsumcl |
|
| 73 |
54 72
|
fsumcl |
|
| 74 |
73
|
abscld |
|
| 75 |
74
|
adantrr |
|
| 76 |
62
|
adantr |
|
| 77 |
76
|
nnrpd |
|
| 78 |
77
|
rprege0d |
|
| 79 |
64
|
adantl |
|
| 80 |
79
|
nnrpd |
|
| 81 |
80
|
rprege0d |
|
| 82 |
|
sqrtmul |
|
| 83 |
78 81 82
|
syl2anc |
|
| 84 |
83
|
oveq2d |
|
| 85 |
77
|
rpsqrtcld |
|
| 86 |
85
|
rpcnne0d |
|
| 87 |
80
|
rpsqrtcld |
|
| 88 |
87
|
rpcnne0d |
|
| 89 |
|
divdiv1 |
|
| 90 |
60 86 88 89
|
syl3anc |
|
| 91 |
84 90
|
eqtr4d |
|
| 92 |
91
|
sumeq2dv |
|
| 93 |
92
|
sumeq2dv |
|
| 94 |
93
|
adantrr |
|
| 95 |
|
simpr |
|
| 96 |
95
|
rpred |
|
| 97 |
|
reflcl |
|
| 98 |
96 97
|
syl |
|
| 99 |
98
|
ltp1d |
|
| 100 |
|
fzdisj |
|
| 101 |
99 100
|
syl |
|
| 102 |
101
|
adantrr |
|
| 103 |
95
|
rprege0d |
|
| 104 |
|
flge0nn0 |
|
| 105 |
|
nn0p1nn |
|
| 106 |
103 104 105
|
3syl |
|
| 107 |
|
nnuz |
|
| 108 |
106 107
|
eleqtrdi |
|
| 109 |
108
|
adantrr |
|
| 110 |
96
|
adantrr |
|
| 111 |
|
2z |
|
| 112 |
|
rpexpcl |
|
| 113 |
95 111 112
|
sylancl |
|
| 114 |
113
|
adantrr |
|
| 115 |
114
|
rpred |
|
| 116 |
110
|
recnd |
|
| 117 |
116
|
mulridd |
|
| 118 |
|
simprr |
|
| 119 |
|
1red |
|
| 120 |
|
rpregt0 |
|
| 121 |
120
|
ad2antrl |
|
| 122 |
|
lemul2 |
|
| 123 |
119 110 121 122
|
syl3anc |
|
| 124 |
118 123
|
mpbid |
|
| 125 |
117 124
|
eqbrtrrd |
|
| 126 |
116
|
sqvald |
|
| 127 |
125 126
|
breqtrrd |
|
| 128 |
|
flword2 |
|
| 129 |
110 115 127 128
|
syl3anc |
|
| 130 |
|
fzsplit2 |
|
| 131 |
109 129 130
|
syl2anc |
|
| 132 |
|
fzfid |
|
| 133 |
92 72
|
eqeltrrd |
|
| 134 |
133
|
adantlrr |
|
| 135 |
102 131 132 134
|
fsumsplit |
|
| 136 |
94 135
|
eqtrd |
|
| 137 |
136
|
fveq2d |
|
| 138 |
75 137
|
eqled |
|
| 139 |
13 52 53 73 138
|
o1le |
|