Metamath Proof Explorer


Theorem dchrisum0lem3

Description: Lemma for dchrisum0 . (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
rpvmasum2.w W=yD1˙|myLmm=0
dchrisum0.b φXW
dchrisum0lem1.f F=aXLaa
dchrisum0.c φC0+∞
dchrisum0.s φseq1+FS
dchrisum0.1 φy1+∞seq1+FySCy
Assertion dchrisum0lem3 φx+m=1x2d=1x2mXLmmd𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 rpvmasum2.w W=yD1˙|myLmm=0
8 dchrisum0.b φXW
9 dchrisum0lem1.f F=aXLaa
10 dchrisum0.c φC0+∞
11 dchrisum0.s φseq1+FS
12 dchrisum0.1 φy1+∞seq1+FySCy
13 1red φ1
14 sumex m=1xd=1x2mXLmmdV
15 14 a1i φx+m=1xd=1x2mXLmmdV
16 sumex m=x+1x2d=1x2mXLmmdV
17 16 a1i φx+m=x+1x2d=1x2mXLmmdV
18 7 ssrab3 WD1˙
19 difss D1˙D
20 18 19 sstri WD
21 20 8 sselid φXD
22 18 8 sselid φXD1˙
23 eldifsni XD1˙X1˙
24 22 23 syl φX1˙
25 eqid aXLaa=aXLaa
26 1 2 3 4 5 6 21 24 25 dchrmusumlema φtc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcy
27 3 adantr φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyN
28 8 adantr φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyXW
29 10 adantr φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyC0+∞
30 11 adantr φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyseq1+FS
31 12 adantr φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyy1+∞seq1+FySCy
32 eqid y+d=1y1d2y=y+d=1y1d2y
33 32 divsqrsum y+d=1y1d2ydom
34 32 divsqrsumf y+d=1y1d2y:+
35 ax-resscn
36 fss y+d=1y1d2y:+y+d=1y1d2y:+
37 34 35 36 mp2an y+d=1y1d2y:+
38 37 a1i φy+d=1y1d2y:+
39 rpsup sup+*<=+∞
40 39 a1i φsup+*<=+∞
41 38 40 rlimdm φy+d=1y1d2ydomy+d=1y1d2yy+d=1y1d2y
42 33 41 mpbii φy+d=1y1d2yy+d=1y1d2y
43 42 adantr φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyy+d=1y1d2yy+d=1y1d2y
44 simprl φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyc0+∞
45 simprrl φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyseq1+aXLaat
46 simprrr φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyy1+∞seq1+aXLaaytcy
47 1 2 27 4 5 6 7 28 9 29 30 31 32 43 25 44 45 46 dchrisum0lem2 φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyx+m=1xd=1x2mXLmmd𝑂1
48 47 rexlimdvaa φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyx+m=1xd=1x2mXLmmd𝑂1
49 48 exlimdv φtc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyx+m=1xd=1x2mXLmmd𝑂1
50 26 49 mpd φx+m=1xd=1x2mXLmmd𝑂1
51 1 2 3 4 5 6 7 8 9 10 11 12 dchrisum0lem1 φx+m=x+1x2d=1x2mXLmmd𝑂1
52 15 17 50 51 o1add2 φx+m=1xd=1x2mXLmmd+m=x+1x2d=1x2mXLmmd𝑂1
53 ovexd φx+m=1xd=1x2mXLmmd+m=x+1x2d=1x2mXLmmdV
54 fzfid φx+1x2Fin
55 fzfid φx+m1x21x2mFin
56 21 ad2antrr φx+m1x2XD
57 elfzelz m1x2m
58 57 adantl φx+m1x2m
59 4 1 5 2 56 58 dchrzrhcl φx+m1x2XLm
60 59 adantr φx+m1x2d1x2mXLm
61 elfznn m1x2m
62 61 adantl φx+m1x2m
63 62 nnrpd φx+m1x2m+
64 elfznn d1x2md
65 64 nnrpd d1x2md+
66 rpmulcl m+d+md+
67 63 65 66 syl2an φx+m1x2d1x2mmd+
68 67 rpsqrtcld φx+m1x2d1x2mmd+
69 68 rpcnd φx+m1x2d1x2mmd
70 68 rpne0d φx+m1x2d1x2mmd0
71 60 69 70 divcld φx+m1x2d1x2mXLmmd
72 55 71 fsumcl φx+m1x2d=1x2mXLmmd
73 54 72 fsumcl φx+m=1x2d=1x2mXLmmd
74 73 abscld φx+m=1x2d=1x2mXLmmd
75 74 adantrr φx+1xm=1x2d=1x2mXLmmd
76 62 adantr φx+m1x2d1x2mm
77 76 nnrpd φx+m1x2d1x2mm+
78 77 rprege0d φx+m1x2d1x2mm0m
79 64 adantl φx+m1x2d1x2md
80 79 nnrpd φx+m1x2d1x2md+
81 80 rprege0d φx+m1x2d1x2md0d
82 sqrtmul m0md0dmd=md
83 78 81 82 syl2anc φx+m1x2d1x2mmd=md
84 83 oveq2d φx+m1x2d1x2mXLmmd=XLmmd
85 77 rpsqrtcld φx+m1x2d1x2mm+
86 85 rpcnne0d φx+m1x2d1x2mmm0
87 80 rpsqrtcld φx+m1x2d1x2md+
88 87 rpcnne0d φx+m1x2d1x2mdd0
89 divdiv1 XLmmm0dd0XLmmd=XLmmd
90 60 86 88 89 syl3anc φx+m1x2d1x2mXLmmd=XLmmd
91 84 90 eqtr4d φx+m1x2d1x2mXLmmd=XLmmd
92 91 sumeq2dv φx+m1x2d=1x2mXLmmd=d=1x2mXLmmd
93 92 sumeq2dv φx+m=1x2d=1x2mXLmmd=m=1x2d=1x2mXLmmd
94 93 adantrr φx+1xm=1x2d=1x2mXLmmd=m=1x2d=1x2mXLmmd
95 simpr φx+x+
96 95 rpred φx+x
97 reflcl xx
98 96 97 syl φx+x
99 98 ltp1d φx+x<x+1
100 fzdisj x<x+11xx+1x2=
101 99 100 syl φx+1xx+1x2=
102 101 adantrr φx+1x1xx+1x2=
103 95 rprege0d φx+x0x
104 flge0nn0 x0xx0
105 nn0p1nn x0x+1
106 103 104 105 3syl φx+x+1
107 nnuz =1
108 106 107 eleqtrdi φx+x+11
109 108 adantrr φx+1xx+11
110 96 adantrr φx+1xx
111 2z 2
112 rpexpcl x+2x2+
113 95 111 112 sylancl φx+x2+
114 113 adantrr φx+1xx2+
115 114 rpred φx+1xx2
116 110 recnd φx+1xx
117 116 mulridd φx+1xx1=x
118 simprr φx+1x1x
119 1red φx+1x1
120 rpregt0 x+x0<x
121 120 ad2antrl φx+1xx0<x
122 lemul2 1xx0<x1xx1xx
123 119 110 121 122 syl3anc φx+1x1xx1xx
124 118 123 mpbid φx+1xx1xx
125 117 124 eqbrtrrd φx+1xxxx
126 116 sqvald φx+1xx2=xx
127 125 126 breqtrrd φx+1xxx2
128 flword2 xx2xx2x2x
129 110 115 127 128 syl3anc φx+1xx2x
130 fzsplit2 x+11x2x1x2=1xx+1x2
131 109 129 130 syl2anc φx+1x1x2=1xx+1x2
132 fzfid φx+1x1x2Fin
133 92 72 eqeltrrd φx+m1x2d=1x2mXLmmd
134 133 adantlrr φx+1xm1x2d=1x2mXLmmd
135 102 131 132 134 fsumsplit φx+1xm=1x2d=1x2mXLmmd=m=1xd=1x2mXLmmd+m=x+1x2d=1x2mXLmmd
136 94 135 eqtrd φx+1xm=1x2d=1x2mXLmmd=m=1xd=1x2mXLmmd+m=x+1x2d=1x2mXLmmd
137 136 fveq2d φx+1xm=1x2d=1x2mXLmmd=m=1xd=1x2mXLmmd+m=x+1x2d=1x2mXLmmd
138 75 137 eqled φx+1xm=1x2d=1x2mXLmmdm=1xd=1x2mXLmmd+m=x+1x2d=1x2mXLmmd
139 13 52 53 73 138 o1le φx+m=1x2d=1x2mXLmmd𝑂1