Metamath Proof Explorer


Theorem dvatan

Description: The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses atansopn.d D = −∞ 0
atansopn.s S = y | 1 + y 2 D
Assertion dvatan D arctan S = x S 1 1 + x 2

Proof

Step Hyp Ref Expression
1 atansopn.d D = −∞ 0
2 atansopn.s S = y | 1 + y 2 D
3 cnelprrecn
4 3 a1i
5 ax-1cn 1
6 ax-icn i
7 1 2 atansssdm S dom arctan
8 simpr x S x S
9 7 8 sseldi x S x dom arctan
10 atandm2 x dom arctan x 1 i x 0 1 + i x 0
11 9 10 sylib x S x 1 i x 0 1 + i x 0
12 11 simp1d x S x
13 mulcl i x i x
14 6 12 13 sylancr x S i x
15 subcl 1 i x 1 i x
16 5 14 15 sylancr x S 1 i x
17 11 simp2d x S 1 i x 0
18 16 17 logcld x S log 1 i x
19 addcl 1 i x 1 + i x
20 5 14 19 sylancr x S 1 + i x
21 11 simp3d x S 1 + i x 0
22 20 21 logcld x S log 1 + i x
23 18 22 subcld x S log 1 i x log 1 + i x
24 ovexd x S 2 i 1 + x 2 V
25 ovexd x S 1 x + i V
26 1 2 atans2 x S x 1 i x D 1 + i x D
27 26 simp2bi x S 1 i x D
28 27 adantl x S 1 i x D
29 negex i V
30 29 a1i x S i V
31 1 logdmss D 0
32 simpr y D y D
33 31 32 sseldi y D y 0
34 logf1o log : 0 1-1 onto ran log
35 f1of log : 0 1-1 onto ran log log : 0 ran log
36 34 35 ax-mp log : 0 ran log
37 36 ffvelrni y 0 log y ran log
38 logrncn log y ran log log y
39 33 37 38 3syl y D log y
40 ovexd y D 1 y V
41 6 a1i i
42 41 13 sylan x i x
43 5 42 15 sylancr x 1 i x
44 29 a1i x i V
45 1cnd x 1
46 0cnd x 0
47 1cnd 1
48 4 47 dvmptc dx 1 d x = x 0
49 6 a1i x i
50 simpr x x
51 4 dvmptid dx x d x = x 1
52 4 50 45 51 41 dvmptcmul dx i x d x = x i 1
53 6 mulid1i i 1 = i
54 53 mpteq2i x i 1 = x i
55 52 54 eqtrdi dx i x d x = x i
56 4 45 46 48 42 49 55 dvmptsub dx 1 i x d x = x 0 i
57 df-neg i = 0 i
58 57 mpteq2i x i = x 0 i
59 56 58 eqtr4di dx 1 i x d x = x i
60 2 ssrab3 S
61 60 a1i S
62 eqid TopOpen fld = TopOpen fld
63 62 cnfldtopon TopOpen fld TopOn
64 63 toponrestid TopOpen fld = TopOpen fld 𝑡
65 1 2 atansopn S TopOpen fld
66 65 a1i S TopOpen fld
67 4 43 44 59 61 64 62 66 dvmptres dx S 1 i x d x = x S i
68 fssres log : 0 ran log D 0 log D : D ran log
69 36 31 68 mp2an log D : D ran log
70 69 a1i log D : D ran log
71 70 feqmptd log D = y D log D y
72 fvres y D log D y = log y
73 72 mpteq2ia y D log D y = y D log y
74 71 73 eqtr2di y D log y = log D
75 74 oveq2d dy D log y d y = D log D
76 1 dvlog D log D = y D 1 y
77 75 76 eqtrdi dy D log y d y = y D 1 y
78 fveq2 y = 1 i x log y = log 1 i x
79 oveq2 y = 1 i x 1 y = 1 1 i x
80 4 4 28 30 39 40 67 77 78 79 dvmptco dx S log 1 i x d x = x S 1 1 i x i
81 irec 1 i = i
82 81 oveq2i 1 1 i x 1 i = 1 1 i x i
83 6 a1i x S i
84 ine0 i 0
85 84 a1i x S i 0
86 16 83 17 85 recdiv2d x S 1 1 i x i = 1 1 i x i
87 16 17 reccld x S 1 1 i x
88 87 83 85 divrecd x S 1 1 i x i = 1 1 i x 1 i
89 1cnd x S 1
90 89 14 83 subdird x S 1 i x i = 1 i i x i
91 6 mulid2i 1 i = i
92 91 a1i x S 1 i = i
93 83 12 83 mul32d x S i x i = i i x
94 ixi i i = 1
95 94 oveq1i i i x = -1 x
96 12 mulm1d x S -1 x = x
97 95 96 syl5eq x S i i x = x
98 93 97 eqtrd x S i x i = x
99 92 98 oveq12d x S 1 i i x i = i x
100 subneg i x i x = i + x
101 6 12 100 sylancr x S i x = i + x
102 90 99 101 3eqtrd x S 1 i x i = i + x
103 83 12 102 comraddd x S 1 i x i = x + i
104 103 oveq2d x S 1 1 i x i = 1 x + i
105 86 88 104 3eqtr3d x S 1 1 i x 1 i = 1 x + i
106 82 105 syl5eqr x S 1 1 i x i = 1 x + i
107 106 mpteq2dva x S 1 1 i x i = x S 1 x + i
108 80 107 eqtrd dx S log 1 i x d x = x S 1 x + i
109 ovexd x S 1 x i V
110 26 simp3bi x S 1 + i x D
111 110 adantl x S 1 + i x D
112 5 42 19 sylancr x 1 + i x
113 4 45 46 48 42 49 55 dvmptadd dx 1 + i x d x = x 0 + i
114 6 addid2i 0 + i = i
115 114 mpteq2i x 0 + i = x i
116 113 115 eqtrdi dx 1 + i x d x = x i
117 4 112 49 116 61 64 62 66 dvmptres dx S 1 + i x d x = x S i
118 fveq2 y = 1 + i x log y = log 1 + i x
119 oveq2 y = 1 + i x 1 y = 1 1 + i x
120 4 4 111 83 39 40 117 77 118 119 dvmptco dx S log 1 + i x d x = x S 1 1 + i x i
121 89 20 83 21 85 divdiv2d x S 1 1 + i x i = 1 i 1 + i x
122 89 14 83 85 divdird x S 1 + i x i = 1 i + i x i
123 81 a1i x S 1 i = i
124 12 83 85 divcan3d x S i x i = x
125 123 124 oveq12d x S 1 i + i x i = - i + x
126 negicn i
127 addcom i x - i + x = x + i
128 126 12 127 sylancr x S - i + x = x + i
129 negsub x i x + i = x i
130 12 6 129 sylancl x S x + i = x i
131 128 130 eqtrd x S - i + x = x i
132 122 125 131 3eqtrd x S 1 + i x i = x i
133 132 oveq2d x S 1 1 + i x i = 1 x i
134 89 83 20 21 div23d x S 1 i 1 + i x = 1 1 + i x i
135 121 133 134 3eqtr3rd x S 1 1 + i x i = 1 x i
136 135 mpteq2dva x S 1 1 + i x i = x S 1 x i
137 120 136 eqtrd dx S log 1 + i x d x = x S 1 x i
138 4 18 25 108 22 109 137 dvmptsub dx S log 1 i x log 1 + i x d x = x S 1 x + i 1 x i
139 subcl x i x i
140 12 6 139 sylancl x S x i
141 addcl x i x + i
142 12 6 141 sylancl x S x + i
143 12 sqcld x S x 2
144 addcl 1 x 2 1 + x 2
145 5 143 144 sylancr x S 1 + x 2
146 atandm4 x dom arctan x 1 + x 2 0
147 146 simprbi x dom arctan 1 + x 2 0
148 9 147 syl x S 1 + x 2 0
149 140 142 145 148 divsubdird x S x - i - x + i 1 + x 2 = x i 1 + x 2 x + i 1 + x 2
150 130 oveq1d x S x + i - x + i = x - i - x + i
151 126 a1i x S i
152 12 151 83 pnpcand x S x + i - x + i = - i - i
153 150 152 eqtr3d x S x - i - x + i = - i - i
154 2cn 2
155 154 6 84 divreci 2 i = 2 1 i
156 81 oveq2i 2 1 i = 2 i
157 155 156 eqtri 2 i = 2 i
158 126 2timesi 2 i = - i + i
159 126 6 negsubi - i + i = - i - i
160 157 158 159 3eqtri 2 i = - i - i
161 153 160 eqtr4di x S x - i - x + i = 2 i
162 161 oveq1d x S x - i - x + i 1 + x 2 = 2 i 1 + x 2
163 140 mulid1d x S x i 1 = x i
164 140 142 mulcomd x S x i x + i = x + i x i
165 i2 i 2 = 1
166 165 oveq2i x 2 i 2 = x 2 -1
167 subneg x 2 1 x 2 -1 = x 2 + 1
168 143 5 167 sylancl x S x 2 -1 = x 2 + 1
169 166 168 syl5eq x S x 2 i 2 = x 2 + 1
170 subsq x i x 2 i 2 = x + i x i
171 12 6 170 sylancl x S x 2 i 2 = x + i x i
172 addcom x 2 1 x 2 + 1 = 1 + x 2
173 143 5 172 sylancl x S x 2 + 1 = 1 + x 2
174 169 171 173 3eqtr3d x S x + i x i = 1 + x 2
175 164 174 eqtrd x S x i x + i = 1 + x 2
176 163 175 oveq12d x S x i 1 x i x + i = x i 1 + x 2
177 subneg x i x i = x + i
178 12 6 177 sylancl x S x i = x + i
179 atandm x dom arctan x x i x i
180 9 179 sylib x S x x i x i
181 180 simp2d x S x i
182 subeq0 x i x i = 0 x = i
183 182 necon3bid x i x i 0 x i
184 12 126 183 sylancl x S x i 0 x i
185 181 184 mpbird x S x i 0
186 178 185 eqnetrrd x S x + i 0
187 180 simp3d x S x i
188 subeq0 x i x i = 0 x = i
189 188 necon3bid x i x i 0 x i
190 12 6 189 sylancl x S x i 0 x i
191 187 190 mpbird x S x i 0
192 89 142 140 186 191 divcan5d x S x i 1 x i x + i = 1 x + i
193 176 192 eqtr3d x S x i 1 + x 2 = 1 x + i
194 142 mulid1d x S x + i 1 = x + i
195 194 174 oveq12d x S x + i 1 x + i x i = x + i 1 + x 2
196 89 140 142 191 186 divcan5d x S x + i 1 x + i x i = 1 x i
197 195 196 eqtr3d x S x + i 1 + x 2 = 1 x i
198 193 197 oveq12d x S x i 1 + x 2 x + i 1 + x 2 = 1 x + i 1 x i
199 149 162 198 3eqtr3rd x S 1 x + i 1 x i = 2 i 1 + x 2
200 199 mpteq2dva x S 1 x + i 1 x i = x S 2 i 1 + x 2
201 138 200 eqtrd dx S log 1 i x log 1 + i x d x = x S 2 i 1 + x 2
202 halfcl i i 2
203 6 202 mp1i i 2
204 4 23 24 201 203 dvmptcmul dx S i 2 log 1 i x log 1 + i x d x = x S i 2 2 i 1 + x 2
205 df-atan arctan = x i i i 2 log 1 i x log 1 + i x
206 205 reseq1i arctan S = x i i i 2 log 1 i x log 1 + i x S
207 atanf arctan : i i
208 207 fdmi dom arctan = i i
209 7 208 sseqtri S i i
210 resmpt S i i x i i i 2 log 1 i x log 1 + i x S = x S i 2 log 1 i x log 1 + i x
211 209 210 ax-mp x i i i 2 log 1 i x log 1 + i x S = x S i 2 log 1 i x log 1 + i x
212 206 211 eqtri arctan S = x S i 2 log 1 i x log 1 + i x
213 212 a1i arctan S = x S i 2 log 1 i x log 1 + i x
214 213 oveq2d D arctan S = dx S i 2 log 1 i x log 1 + i x d x
215 2ne0 2 0
216 divcan6 i i 0 2 2 0 i 2 2 i = 1
217 6 84 154 215 216 mp4an i 2 2 i = 1
218 217 oveq1i i 2 2 i 1 + x 2 = 1 1 + x 2
219 6 202 mp1i x S i 2
220 154 6 84 divcli 2 i
221 220 a1i x S 2 i
222 219 221 145 148 divassd x S i 2 2 i 1 + x 2 = i 2 2 i 1 + x 2
223 218 222 syl5eqr x S 1 1 + x 2 = i 2 2 i 1 + x 2
224 223 mpteq2dva x S 1 1 + x 2 = x S i 2 2 i 1 + x 2
225 204 214 224 3eqtr4d D arctan S = x S 1 1 + x 2
226 225 mptru D arctan S = x S 1 1 + x 2