Metamath Proof Explorer


Theorem dvatan

Description: The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses atansopn.d D=−∞0
atansopn.s S=y|1+y2D
Assertion dvatan DarctanS=xS11+x2

Proof

Step Hyp Ref Expression
1 atansopn.d D=−∞0
2 atansopn.s S=y|1+y2D
3 cnelprrecn
4 3 a1i
5 ax-1cn 1
6 ax-icn i
7 1 2 atansssdm Sdomarctan
8 simpr xSxS
9 7 8 sselid xSxdomarctan
10 atandm2 xdomarctanx1ix01+ix0
11 9 10 sylib xSx1ix01+ix0
12 11 simp1d xSx
13 mulcl ixix
14 6 12 13 sylancr xSix
15 subcl 1ix1ix
16 5 14 15 sylancr xS1ix
17 11 simp2d xS1ix0
18 16 17 logcld xSlog1ix
19 addcl 1ix1+ix
20 5 14 19 sylancr xS1+ix
21 11 simp3d xS1+ix0
22 20 21 logcld xSlog1+ix
23 18 22 subcld xSlog1ixlog1+ix
24 ovexd xS2i1+x2V
25 ovexd xS1x+iV
26 1 2 atans2 xSx1ixD1+ixD
27 26 simp2bi xS1ixD
28 27 adantl xS1ixD
29 negex iV
30 29 a1i xSiV
31 1 logdmss D0
32 simpr yDyD
33 31 32 sselid yDy0
34 logf1o log:01-1 ontoranlog
35 f1of log:01-1 ontoranloglog:0ranlog
36 34 35 ax-mp log:0ranlog
37 36 ffvelcdmi y0logyranlog
38 logrncn logyranloglogy
39 33 37 38 3syl yDlogy
40 ovexd yD1yV
41 6 a1i i
42 41 13 sylan xix
43 5 42 15 sylancr x1ix
44 29 a1i xiV
45 1cnd x1
46 0cnd x0
47 1cnd 1
48 4 47 dvmptc dx1dx=x0
49 6 a1i xi
50 simpr xx
51 4 dvmptid dxxdx=x1
52 4 50 45 51 41 dvmptcmul dxixdx=xi1
53 6 mulridi i1=i
54 53 mpteq2i xi1=xi
55 52 54 eqtrdi dxixdx=xi
56 4 45 46 48 42 49 55 dvmptsub dx1ixdx=x0i
57 df-neg i=0i
58 57 mpteq2i xi=x0i
59 56 58 eqtr4di dx1ixdx=xi
60 2 ssrab3 S
61 60 a1i S
62 eqid TopOpenfld=TopOpenfld
63 62 cnfldtopon TopOpenfldTopOn
64 63 toponrestid TopOpenfld=TopOpenfld𝑡
65 1 2 atansopn STopOpenfld
66 65 a1i STopOpenfld
67 4 43 44 59 61 64 62 66 dvmptres dxS1ixdx=xSi
68 fssres log:0ranlogD0logD:Dranlog
69 36 31 68 mp2an logD:Dranlog
70 69 a1i logD:Dranlog
71 70 feqmptd logD=yDlogDy
72 fvres yDlogDy=logy
73 72 mpteq2ia yDlogDy=yDlogy
74 71 73 eqtr2di yDlogy=logD
75 74 oveq2d dyDlogydy=DlogD
76 1 dvlog DlogD=yD1y
77 75 76 eqtrdi dyDlogydy=yD1y
78 fveq2 y=1ixlogy=log1ix
79 oveq2 y=1ix1y=11ix
80 4 4 28 30 39 40 67 77 78 79 dvmptco dxSlog1ixdx=xS11ixi
81 irec 1i=i
82 81 oveq2i 11ix1i=11ixi
83 6 a1i xSi
84 ine0 i0
85 84 a1i xSi0
86 16 83 17 85 recdiv2d xS11ixi=11ixi
87 16 17 reccld xS11ix
88 87 83 85 divrecd xS11ixi=11ix1i
89 1cnd xS1
90 89 14 83 subdird xS1ixi=1iixi
91 6 mullidi 1i=i
92 91 a1i xS1i=i
93 83 12 83 mul32d xSixi=iix
94 ixi ii=1
95 94 oveq1i iix=-1x
96 12 mulm1d xS-1x=x
97 95 96 eqtrid xSiix=x
98 93 97 eqtrd xSixi=x
99 92 98 oveq12d xS1iixi=ix
100 subneg ixix=i+x
101 6 12 100 sylancr xSix=i+x
102 90 99 101 3eqtrd xS1ixi=i+x
103 83 12 102 comraddd xS1ixi=x+i
104 103 oveq2d xS11ixi=1x+i
105 86 88 104 3eqtr3d xS11ix1i=1x+i
106 82 105 eqtr3id xS11ixi=1x+i
107 106 mpteq2dva xS11ixi=xS1x+i
108 80 107 eqtrd dxSlog1ixdx=xS1x+i
109 ovexd xS1xiV
110 26 simp3bi xS1+ixD
111 110 adantl xS1+ixD
112 5 42 19 sylancr x1+ix
113 4 45 46 48 42 49 55 dvmptadd dx1+ixdx=x0+i
114 6 addlidi 0+i=i
115 114 mpteq2i x0+i=xi
116 113 115 eqtrdi dx1+ixdx=xi
117 4 112 49 116 61 64 62 66 dvmptres dxS1+ixdx=xSi
118 fveq2 y=1+ixlogy=log1+ix
119 oveq2 y=1+ix1y=11+ix
120 4 4 111 83 39 40 117 77 118 119 dvmptco dxSlog1+ixdx=xS11+ixi
121 89 20 83 21 85 divdiv2d xS11+ixi=1i1+ix
122 89 14 83 85 divdird xS1+ixi=1i+ixi
123 81 a1i xS1i=i
124 12 83 85 divcan3d xSixi=x
125 123 124 oveq12d xS1i+ixi=-i+x
126 negicn i
127 addcom ix-i+x=x+i
128 126 12 127 sylancr xS-i+x=x+i
129 negsub xix+i=xi
130 12 6 129 sylancl xSx+i=xi
131 128 130 eqtrd xS-i+x=xi
132 122 125 131 3eqtrd xS1+ixi=xi
133 132 oveq2d xS11+ixi=1xi
134 89 83 20 21 div23d xS1i1+ix=11+ixi
135 121 133 134 3eqtr3rd xS11+ixi=1xi
136 135 mpteq2dva xS11+ixi=xS1xi
137 120 136 eqtrd dxSlog1+ixdx=xS1xi
138 4 18 25 108 22 109 137 dvmptsub dxSlog1ixlog1+ixdx=xS1x+i1xi
139 subcl xixi
140 12 6 139 sylancl xSxi
141 addcl xix+i
142 12 6 141 sylancl xSx+i
143 12 sqcld xSx2
144 addcl 1x21+x2
145 5 143 144 sylancr xS1+x2
146 atandm4 xdomarctanx1+x20
147 146 simprbi xdomarctan1+x20
148 9 147 syl xS1+x20
149 140 142 145 148 divsubdird xSx-i-x+i1+x2=xi1+x2x+i1+x2
150 130 oveq1d xSx+i-x+i=x-i-x+i
151 126 a1i xSi
152 12 151 83 pnpcand xSx+i-x+i=-i-i
153 150 152 eqtr3d xSx-i-x+i=-i-i
154 2cn 2
155 154 6 84 divreci 2i=21i
156 81 oveq2i 21i=2i
157 155 156 eqtri 2i=2i
158 126 2timesi 2i=-i+i
159 126 6 negsubi -i+i=-i-i
160 157 158 159 3eqtri 2i=-i-i
161 153 160 eqtr4di xSx-i-x+i=2i
162 161 oveq1d xSx-i-x+i1+x2=2i1+x2
163 140 mulridd xSxi1=xi
164 140 142 mulcomd xSxix+i=x+ixi
165 i2 i2=1
166 165 oveq2i x2i2=x2-1
167 subneg x21x2-1=x2+1
168 143 5 167 sylancl xSx2-1=x2+1
169 166 168 eqtrid xSx2i2=x2+1
170 subsq xix2i2=x+ixi
171 12 6 170 sylancl xSx2i2=x+ixi
172 addcom x21x2+1=1+x2
173 143 5 172 sylancl xSx2+1=1+x2
174 169 171 173 3eqtr3d xSx+ixi=1+x2
175 164 174 eqtrd xSxix+i=1+x2
176 163 175 oveq12d xSxi1xix+i=xi1+x2
177 subneg xixi=x+i
178 12 6 177 sylancl xSxi=x+i
179 atandm xdomarctanxxixi
180 9 179 sylib xSxxixi
181 180 simp2d xSxi
182 subeq0 xixi=0x=i
183 182 necon3bid xixi0xi
184 12 126 183 sylancl xSxi0xi
185 181 184 mpbird xSxi0
186 178 185 eqnetrrd xSx+i0
187 180 simp3d xSxi
188 subeq0 xixi=0x=i
189 188 necon3bid xixi0xi
190 12 6 189 sylancl xSxi0xi
191 187 190 mpbird xSxi0
192 89 142 140 186 191 divcan5d xSxi1xix+i=1x+i
193 176 192 eqtr3d xSxi1+x2=1x+i
194 142 mulridd xSx+i1=x+i
195 194 174 oveq12d xSx+i1x+ixi=x+i1+x2
196 89 140 142 191 186 divcan5d xSx+i1x+ixi=1xi
197 195 196 eqtr3d xSx+i1+x2=1xi
198 193 197 oveq12d xSxi1+x2x+i1+x2=1x+i1xi
199 149 162 198 3eqtr3rd xS1x+i1xi=2i1+x2
200 199 mpteq2dva xS1x+i1xi=xS2i1+x2
201 138 200 eqtrd dxSlog1ixlog1+ixdx=xS2i1+x2
202 halfcl ii2
203 6 202 mp1i i2
204 4 23 24 201 203 dvmptcmul dxSi2log1ixlog1+ixdx=xSi22i1+x2
205 df-atan arctan=xiii2log1ixlog1+ix
206 205 reseq1i arctanS=xiii2log1ixlog1+ixS
207 atanf arctan:ii
208 207 fdmi domarctan=ii
209 7 208 sseqtri Sii
210 resmpt Siixiii2log1ixlog1+ixS=xSi2log1ixlog1+ix
211 209 210 ax-mp xiii2log1ixlog1+ixS=xSi2log1ixlog1+ix
212 206 211 eqtri arctanS=xSi2log1ixlog1+ix
213 212 a1i arctanS=xSi2log1ixlog1+ix
214 213 oveq2d DarctanS=dxSi2log1ixlog1+ixdx
215 2ne0 20
216 divcan6 ii0220i22i=1
217 6 84 154 215 216 mp4an i22i=1
218 217 oveq1i i22i1+x2=11+x2
219 6 202 mp1i xSi2
220 154 6 84 divcli 2i
221 220 a1i xS2i
222 219 221 145 148 divassd xSi22i1+x2=i22i1+x2
223 218 222 eqtr3id xS11+x2=i22i1+x2
224 223 mpteq2dva xS11+x2=xSi22i1+x2
225 204 214 224 3eqtr4d DarctanS=xS11+x2
226 225 mptru DarctanS=xS11+x2