Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
dvatan
Next ⟩
atancn
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvatan
Description:
The derivative of the arctangent.
(Contributed by
Mario Carneiro
, 7-Apr-2015)
Ref
Expression
Hypotheses
atansopn.d
⊢
D
=
ℂ
∖
−∞
0
atansopn.s
⊢
S
=
y
∈
ℂ
|
1
+
y
2
∈
D
Assertion
dvatan
⊢
ℂ
D
arctan
↾
S
=
x
∈
S
⟼
1
1
+
x
2
Proof
Step
Hyp
Ref
Expression
1
atansopn.d
⊢
D
=
ℂ
∖
−∞
0
2
atansopn.s
⊢
S
=
y
∈
ℂ
|
1
+
y
2
∈
D
3
cnelprrecn
⊢
ℂ
∈
ℝ
ℂ
4
3
a1i
⊢
⊤
→
ℂ
∈
ℝ
ℂ
5
ax-1cn
⊢
1
∈
ℂ
6
ax-icn
⊢
i
∈
ℂ
7
1
2
atansssdm
⊢
S
⊆
dom
arctan
8
simpr
⊢
⊤
∧
x
∈
S
→
x
∈
S
9
7
8
sselid
⊢
⊤
∧
x
∈
S
→
x
∈
dom
arctan
10
atandm2
⊢
x
∈
dom
arctan
↔
x
∈
ℂ
∧
1
−
i
x
≠
0
∧
1
+
i
x
≠
0
11
9
10
sylib
⊢
⊤
∧
x
∈
S
→
x
∈
ℂ
∧
1
−
i
x
≠
0
∧
1
+
i
x
≠
0
12
11
simp1d
⊢
⊤
∧
x
∈
S
→
x
∈
ℂ
13
mulcl
⊢
i
∈
ℂ
∧
x
∈
ℂ
→
i
x
∈
ℂ
14
6
12
13
sylancr
⊢
⊤
∧
x
∈
S
→
i
x
∈
ℂ
15
subcl
⊢
1
∈
ℂ
∧
i
x
∈
ℂ
→
1
−
i
x
∈
ℂ
16
5
14
15
sylancr
⊢
⊤
∧
x
∈
S
→
1
−
i
x
∈
ℂ
17
11
simp2d
⊢
⊤
∧
x
∈
S
→
1
−
i
x
≠
0
18
16
17
logcld
⊢
⊤
∧
x
∈
S
→
log
1
−
i
x
∈
ℂ
19
addcl
⊢
1
∈
ℂ
∧
i
x
∈
ℂ
→
1
+
i
x
∈
ℂ
20
5
14
19
sylancr
⊢
⊤
∧
x
∈
S
→
1
+
i
x
∈
ℂ
21
11
simp3d
⊢
⊤
∧
x
∈
S
→
1
+
i
x
≠
0
22
20
21
logcld
⊢
⊤
∧
x
∈
S
→
log
1
+
i
x
∈
ℂ
23
18
22
subcld
⊢
⊤
∧
x
∈
S
→
log
1
−
i
x
−
log
1
+
i
x
∈
ℂ
24
ovexd
⊢
⊤
∧
x
∈
S
→
2
i
1
+
x
2
∈
V
25
ovexd
⊢
⊤
∧
x
∈
S
→
1
x
+
i
∈
V
26
1
2
atans2
⊢
x
∈
S
↔
x
∈
ℂ
∧
1
−
i
x
∈
D
∧
1
+
i
x
∈
D
27
26
simp2bi
⊢
x
∈
S
→
1
−
i
x
∈
D
28
27
adantl
⊢
⊤
∧
x
∈
S
→
1
−
i
x
∈
D
29
negex
⊢
−
i
∈
V
30
29
a1i
⊢
⊤
∧
x
∈
S
→
−
i
∈
V
31
1
logdmss
⊢
D
⊆
ℂ
∖
0
32
simpr
⊢
⊤
∧
y
∈
D
→
y
∈
D
33
31
32
sselid
⊢
⊤
∧
y
∈
D
→
y
∈
ℂ
∖
0
34
logf1o
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
log
35
f1of
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
log
→
log
:
ℂ
∖
0
⟶
ran
log
36
34
35
ax-mp
⊢
log
:
ℂ
∖
0
⟶
ran
log
37
36
ffvelcdmi
⊢
y
∈
ℂ
∖
0
→
log
y
∈
ran
log
38
logrncn
⊢
log
y
∈
ran
log
→
log
y
∈
ℂ
39
33
37
38
3syl
⊢
⊤
∧
y
∈
D
→
log
y
∈
ℂ
40
ovexd
⊢
⊤
∧
y
∈
D
→
1
y
∈
V
41
6
a1i
⊢
⊤
→
i
∈
ℂ
42
41
13
sylan
⊢
⊤
∧
x
∈
ℂ
→
i
x
∈
ℂ
43
5
42
15
sylancr
⊢
⊤
∧
x
∈
ℂ
→
1
−
i
x
∈
ℂ
44
29
a1i
⊢
⊤
∧
x
∈
ℂ
→
−
i
∈
V
45
1cnd
⊢
⊤
∧
x
∈
ℂ
→
1
∈
ℂ
46
0cnd
⊢
⊤
∧
x
∈
ℂ
→
0
∈
ℂ
47
1cnd
⊢
⊤
→
1
∈
ℂ
48
4
47
dvmptc
⊢
⊤
→
d
x
∈
ℂ
1
d
ℂ
x
=
x
∈
ℂ
⟼
0
49
6
a1i
⊢
⊤
∧
x
∈
ℂ
→
i
∈
ℂ
50
simpr
⊢
⊤
∧
x
∈
ℂ
→
x
∈
ℂ
51
4
dvmptid
⊢
⊤
→
d
x
∈
ℂ
x
d
ℂ
x
=
x
∈
ℂ
⟼
1
52
4
50
45
51
41
dvmptcmul
⊢
⊤
→
d
x
∈
ℂ
i
x
d
ℂ
x
=
x
∈
ℂ
⟼
i
⋅
1
53
6
mulridi
⊢
i
⋅
1
=
i
54
53
mpteq2i
⊢
x
∈
ℂ
⟼
i
⋅
1
=
x
∈
ℂ
⟼
i
55
52
54
eqtrdi
⊢
⊤
→
d
x
∈
ℂ
i
x
d
ℂ
x
=
x
∈
ℂ
⟼
i
56
4
45
46
48
42
49
55
dvmptsub
⊢
⊤
→
d
x
∈
ℂ
1
−
i
x
d
ℂ
x
=
x
∈
ℂ
⟼
0
−
i
57
df-neg
⊢
−
i
=
0
−
i
58
57
mpteq2i
⊢
x
∈
ℂ
⟼
−
i
=
x
∈
ℂ
⟼
0
−
i
59
56
58
eqtr4di
⊢
⊤
→
d
x
∈
ℂ
1
−
i
x
d
ℂ
x
=
x
∈
ℂ
⟼
−
i
60
2
ssrab3
⊢
S
⊆
ℂ
61
60
a1i
⊢
⊤
→
S
⊆
ℂ
62
eqid
⊢
TopOpen
ℂ
fld
=
TopOpen
ℂ
fld
63
62
cnfldtopon
⊢
TopOpen
ℂ
fld
∈
TopOn
ℂ
64
63
toponrestid
⊢
TopOpen
ℂ
fld
=
TopOpen
ℂ
fld
↾
𝑡
ℂ
65
1
2
atansopn
⊢
S
∈
TopOpen
ℂ
fld
66
65
a1i
⊢
⊤
→
S
∈
TopOpen
ℂ
fld
67
4
43
44
59
61
64
62
66
dvmptres
⊢
⊤
→
d
x
∈
S
1
−
i
x
d
ℂ
x
=
x
∈
S
⟼
−
i
68
fssres
⊢
log
:
ℂ
∖
0
⟶
ran
log
∧
D
⊆
ℂ
∖
0
→
log
↾
D
:
D
⟶
ran
log
69
36
31
68
mp2an
⊢
log
↾
D
:
D
⟶
ran
log
70
69
a1i
⊢
⊤
→
log
↾
D
:
D
⟶
ran
log
71
70
feqmptd
⊢
⊤
→
log
↾
D
=
y
∈
D
⟼
log
↾
D
y
72
fvres
⊢
y
∈
D
→
log
↾
D
y
=
log
y
73
72
mpteq2ia
⊢
y
∈
D
⟼
log
↾
D
y
=
y
∈
D
⟼
log
y
74
71
73
eqtr2di
⊢
⊤
→
y
∈
D
⟼
log
y
=
log
↾
D
75
74
oveq2d
⊢
⊤
→
d
y
∈
D
log
y
d
ℂ
y
=
ℂ
D
log
↾
D
76
1
dvlog
⊢
ℂ
D
log
↾
D
=
y
∈
D
⟼
1
y
77
75
76
eqtrdi
⊢
⊤
→
d
y
∈
D
log
y
d
ℂ
y
=
y
∈
D
⟼
1
y
78
fveq2
⊢
y
=
1
−
i
x
→
log
y
=
log
1
−
i
x
79
oveq2
⊢
y
=
1
−
i
x
→
1
y
=
1
1
−
i
x
80
4
4
28
30
39
40
67
77
78
79
dvmptco
⊢
⊤
→
d
x
∈
S
log
1
−
i
x
d
ℂ
x
=
x
∈
S
⟼
1
1
−
i
x
−
i
81
irec
⊢
1
i
=
−
i
82
81
oveq2i
⊢
1
1
−
i
x
1
i
=
1
1
−
i
x
−
i
83
6
a1i
⊢
⊤
∧
x
∈
S
→
i
∈
ℂ
84
ine0
⊢
i
≠
0
85
84
a1i
⊢
⊤
∧
x
∈
S
→
i
≠
0
86
16
83
17
85
recdiv2d
⊢
⊤
∧
x
∈
S
→
1
1
−
i
x
i
=
1
1
−
i
x
i
87
16
17
reccld
⊢
⊤
∧
x
∈
S
→
1
1
−
i
x
∈
ℂ
88
87
83
85
divrecd
⊢
⊤
∧
x
∈
S
→
1
1
−
i
x
i
=
1
1
−
i
x
1
i
89
1cnd
⊢
⊤
∧
x
∈
S
→
1
∈
ℂ
90
89
14
83
subdird
⊢
⊤
∧
x
∈
S
→
1
−
i
x
i
=
1
i
−
i
x
i
91
6
mullidi
⊢
1
i
=
i
92
91
a1i
⊢
⊤
∧
x
∈
S
→
1
i
=
i
93
83
12
83
mul32d
⊢
⊤
∧
x
∈
S
→
i
x
i
=
i
i
x
94
ixi
⊢
i
i
=
−
1
95
94
oveq1i
⊢
i
i
x
=
-1
x
96
12
mulm1d
⊢
⊤
∧
x
∈
S
→
-1
x
=
−
x
97
95
96
eqtrid
⊢
⊤
∧
x
∈
S
→
i
i
x
=
−
x
98
93
97
eqtrd
⊢
⊤
∧
x
∈
S
→
i
x
i
=
−
x
99
92
98
oveq12d
⊢
⊤
∧
x
∈
S
→
1
i
−
i
x
i
=
i
−
−
x
100
subneg
⊢
i
∈
ℂ
∧
x
∈
ℂ
→
i
−
−
x
=
i
+
x
101
6
12
100
sylancr
⊢
⊤
∧
x
∈
S
→
i
−
−
x
=
i
+
x
102
90
99
101
3eqtrd
⊢
⊤
∧
x
∈
S
→
1
−
i
x
i
=
i
+
x
103
83
12
102
comraddd
⊢
⊤
∧
x
∈
S
→
1
−
i
x
i
=
x
+
i
104
103
oveq2d
⊢
⊤
∧
x
∈
S
→
1
1
−
i
x
i
=
1
x
+
i
105
86
88
104
3eqtr3d
⊢
⊤
∧
x
∈
S
→
1
1
−
i
x
1
i
=
1
x
+
i
106
82
105
eqtr3id
⊢
⊤
∧
x
∈
S
→
1
1
−
i
x
−
i
=
1
x
+
i
107
106
mpteq2dva
⊢
⊤
→
x
∈
S
⟼
1
1
−
i
x
−
i
=
x
∈
S
⟼
1
x
+
i
108
80
107
eqtrd
⊢
⊤
→
d
x
∈
S
log
1
−
i
x
d
ℂ
x
=
x
∈
S
⟼
1
x
+
i
109
ovexd
⊢
⊤
∧
x
∈
S
→
1
x
−
i
∈
V
110
26
simp3bi
⊢
x
∈
S
→
1
+
i
x
∈
D
111
110
adantl
⊢
⊤
∧
x
∈
S
→
1
+
i
x
∈
D
112
5
42
19
sylancr
⊢
⊤
∧
x
∈
ℂ
→
1
+
i
x
∈
ℂ
113
4
45
46
48
42
49
55
dvmptadd
⊢
⊤
→
d
x
∈
ℂ
1
+
i
x
d
ℂ
x
=
x
∈
ℂ
⟼
0
+
i
114
6
addlidi
⊢
0
+
i
=
i
115
114
mpteq2i
⊢
x
∈
ℂ
⟼
0
+
i
=
x
∈
ℂ
⟼
i
116
113
115
eqtrdi
⊢
⊤
→
d
x
∈
ℂ
1
+
i
x
d
ℂ
x
=
x
∈
ℂ
⟼
i
117
4
112
49
116
61
64
62
66
dvmptres
⊢
⊤
→
d
x
∈
S
1
+
i
x
d
ℂ
x
=
x
∈
S
⟼
i
118
fveq2
⊢
y
=
1
+
i
x
→
log
y
=
log
1
+
i
x
119
oveq2
⊢
y
=
1
+
i
x
→
1
y
=
1
1
+
i
x
120
4
4
111
83
39
40
117
77
118
119
dvmptco
⊢
⊤
→
d
x
∈
S
log
1
+
i
x
d
ℂ
x
=
x
∈
S
⟼
1
1
+
i
x
i
121
89
20
83
21
85
divdiv2d
⊢
⊤
∧
x
∈
S
→
1
1
+
i
x
i
=
1
i
1
+
i
x
122
89
14
83
85
divdird
⊢
⊤
∧
x
∈
S
→
1
+
i
x
i
=
1
i
+
i
x
i
123
81
a1i
⊢
⊤
∧
x
∈
S
→
1
i
=
−
i
124
12
83
85
divcan3d
⊢
⊤
∧
x
∈
S
→
i
x
i
=
x
125
123
124
oveq12d
⊢
⊤
∧
x
∈
S
→
1
i
+
i
x
i
=
-
i
+
x
126
negicn
⊢
−
i
∈
ℂ
127
addcom
⊢
−
i
∈
ℂ
∧
x
∈
ℂ
→
-
i
+
x
=
x
+
−
i
128
126
12
127
sylancr
⊢
⊤
∧
x
∈
S
→
-
i
+
x
=
x
+
−
i
129
negsub
⊢
x
∈
ℂ
∧
i
∈
ℂ
→
x
+
−
i
=
x
−
i
130
12
6
129
sylancl
⊢
⊤
∧
x
∈
S
→
x
+
−
i
=
x
−
i
131
128
130
eqtrd
⊢
⊤
∧
x
∈
S
→
-
i
+
x
=
x
−
i
132
122
125
131
3eqtrd
⊢
⊤
∧
x
∈
S
→
1
+
i
x
i
=
x
−
i
133
132
oveq2d
⊢
⊤
∧
x
∈
S
→
1
1
+
i
x
i
=
1
x
−
i
134
89
83
20
21
div23d
⊢
⊤
∧
x
∈
S
→
1
i
1
+
i
x
=
1
1
+
i
x
i
135
121
133
134
3eqtr3rd
⊢
⊤
∧
x
∈
S
→
1
1
+
i
x
i
=
1
x
−
i
136
135
mpteq2dva
⊢
⊤
→
x
∈
S
⟼
1
1
+
i
x
i
=
x
∈
S
⟼
1
x
−
i
137
120
136
eqtrd
⊢
⊤
→
d
x
∈
S
log
1
+
i
x
d
ℂ
x
=
x
∈
S
⟼
1
x
−
i
138
4
18
25
108
22
109
137
dvmptsub
⊢
⊤
→
d
x
∈
S
log
1
−
i
x
−
log
1
+
i
x
d
ℂ
x
=
x
∈
S
⟼
1
x
+
i
−
1
x
−
i
139
subcl
⊢
x
∈
ℂ
∧
i
∈
ℂ
→
x
−
i
∈
ℂ
140
12
6
139
sylancl
⊢
⊤
∧
x
∈
S
→
x
−
i
∈
ℂ
141
addcl
⊢
x
∈
ℂ
∧
i
∈
ℂ
→
x
+
i
∈
ℂ
142
12
6
141
sylancl
⊢
⊤
∧
x
∈
S
→
x
+
i
∈
ℂ
143
12
sqcld
⊢
⊤
∧
x
∈
S
→
x
2
∈
ℂ
144
addcl
⊢
1
∈
ℂ
∧
x
2
∈
ℂ
→
1
+
x
2
∈
ℂ
145
5
143
144
sylancr
⊢
⊤
∧
x
∈
S
→
1
+
x
2
∈
ℂ
146
atandm4
⊢
x
∈
dom
arctan
↔
x
∈
ℂ
∧
1
+
x
2
≠
0
147
146
simprbi
⊢
x
∈
dom
arctan
→
1
+
x
2
≠
0
148
9
147
syl
⊢
⊤
∧
x
∈
S
→
1
+
x
2
≠
0
149
140
142
145
148
divsubdird
⊢
⊤
∧
x
∈
S
→
x
-
i
-
x
+
i
1
+
x
2
=
x
−
i
1
+
x
2
−
x
+
i
1
+
x
2
150
130
oveq1d
⊢
⊤
∧
x
∈
S
→
x
+
−
i
-
x
+
i
=
x
-
i
-
x
+
i
151
126
a1i
⊢
⊤
∧
x
∈
S
→
−
i
∈
ℂ
152
12
151
83
pnpcand
⊢
⊤
∧
x
∈
S
→
x
+
−
i
-
x
+
i
=
-
i
-
i
153
150
152
eqtr3d
⊢
⊤
∧
x
∈
S
→
x
-
i
-
x
+
i
=
-
i
-
i
154
2cn
⊢
2
∈
ℂ
155
154
6
84
divreci
⊢
2
i
=
2
1
i
156
81
oveq2i
⊢
2
1
i
=
2
−
i
157
155
156
eqtri
⊢
2
i
=
2
−
i
158
126
2timesi
⊢
2
−
i
=
-
i
+
−
i
159
126
6
negsubi
⊢
-
i
+
−
i
=
-
i
-
i
160
157
158
159
3eqtri
⊢
2
i
=
-
i
-
i
161
153
160
eqtr4di
⊢
⊤
∧
x
∈
S
→
x
-
i
-
x
+
i
=
2
i
162
161
oveq1d
⊢
⊤
∧
x
∈
S
→
x
-
i
-
x
+
i
1
+
x
2
=
2
i
1
+
x
2
163
140
mulridd
⊢
⊤
∧
x
∈
S
→
x
−
i
⋅
1
=
x
−
i
164
140
142
mulcomd
⊢
⊤
∧
x
∈
S
→
x
−
i
x
+
i
=
x
+
i
x
−
i
165
i2
⊢
i
2
=
−
1
166
165
oveq2i
⊢
x
2
−
i
2
=
x
2
−
-1
167
subneg
⊢
x
2
∈
ℂ
∧
1
∈
ℂ
→
x
2
−
-1
=
x
2
+
1
168
143
5
167
sylancl
⊢
⊤
∧
x
∈
S
→
x
2
−
-1
=
x
2
+
1
169
166
168
eqtrid
⊢
⊤
∧
x
∈
S
→
x
2
−
i
2
=
x
2
+
1
170
subsq
⊢
x
∈
ℂ
∧
i
∈
ℂ
→
x
2
−
i
2
=
x
+
i
x
−
i
171
12
6
170
sylancl
⊢
⊤
∧
x
∈
S
→
x
2
−
i
2
=
x
+
i
x
−
i
172
addcom
⊢
x
2
∈
ℂ
∧
1
∈
ℂ
→
x
2
+
1
=
1
+
x
2
173
143
5
172
sylancl
⊢
⊤
∧
x
∈
S
→
x
2
+
1
=
1
+
x
2
174
169
171
173
3eqtr3d
⊢
⊤
∧
x
∈
S
→
x
+
i
x
−
i
=
1
+
x
2
175
164
174
eqtrd
⊢
⊤
∧
x
∈
S
→
x
−
i
x
+
i
=
1
+
x
2
176
163
175
oveq12d
⊢
⊤
∧
x
∈
S
→
x
−
i
⋅
1
x
−
i
x
+
i
=
x
−
i
1
+
x
2
177
subneg
⊢
x
∈
ℂ
∧
i
∈
ℂ
→
x
−
−
i
=
x
+
i
178
12
6
177
sylancl
⊢
⊤
∧
x
∈
S
→
x
−
−
i
=
x
+
i
179
atandm
⊢
x
∈
dom
arctan
↔
x
∈
ℂ
∧
x
≠
−
i
∧
x
≠
i
180
9
179
sylib
⊢
⊤
∧
x
∈
S
→
x
∈
ℂ
∧
x
≠
−
i
∧
x
≠
i
181
180
simp2d
⊢
⊤
∧
x
∈
S
→
x
≠
−
i
182
subeq0
⊢
x
∈
ℂ
∧
−
i
∈
ℂ
→
x
−
−
i
=
0
↔
x
=
−
i
183
182
necon3bid
⊢
x
∈
ℂ
∧
−
i
∈
ℂ
→
x
−
−
i
≠
0
↔
x
≠
−
i
184
12
126
183
sylancl
⊢
⊤
∧
x
∈
S
→
x
−
−
i
≠
0
↔
x
≠
−
i
185
181
184
mpbird
⊢
⊤
∧
x
∈
S
→
x
−
−
i
≠
0
186
178
185
eqnetrrd
⊢
⊤
∧
x
∈
S
→
x
+
i
≠
0
187
180
simp3d
⊢
⊤
∧
x
∈
S
→
x
≠
i
188
subeq0
⊢
x
∈
ℂ
∧
i
∈
ℂ
→
x
−
i
=
0
↔
x
=
i
189
188
necon3bid
⊢
x
∈
ℂ
∧
i
∈
ℂ
→
x
−
i
≠
0
↔
x
≠
i
190
12
6
189
sylancl
⊢
⊤
∧
x
∈
S
→
x
−
i
≠
0
↔
x
≠
i
191
187
190
mpbird
⊢
⊤
∧
x
∈
S
→
x
−
i
≠
0
192
89
142
140
186
191
divcan5d
⊢
⊤
∧
x
∈
S
→
x
−
i
⋅
1
x
−
i
x
+
i
=
1
x
+
i
193
176
192
eqtr3d
⊢
⊤
∧
x
∈
S
→
x
−
i
1
+
x
2
=
1
x
+
i
194
142
mulridd
⊢
⊤
∧
x
∈
S
→
x
+
i
⋅
1
=
x
+
i
195
194
174
oveq12d
⊢
⊤
∧
x
∈
S
→
x
+
i
⋅
1
x
+
i
x
−
i
=
x
+
i
1
+
x
2
196
89
140
142
191
186
divcan5d
⊢
⊤
∧
x
∈
S
→
x
+
i
⋅
1
x
+
i
x
−
i
=
1
x
−
i
197
195
196
eqtr3d
⊢
⊤
∧
x
∈
S
→
x
+
i
1
+
x
2
=
1
x
−
i
198
193
197
oveq12d
⊢
⊤
∧
x
∈
S
→
x
−
i
1
+
x
2
−
x
+
i
1
+
x
2
=
1
x
+
i
−
1
x
−
i
199
149
162
198
3eqtr3rd
⊢
⊤
∧
x
∈
S
→
1
x
+
i
−
1
x
−
i
=
2
i
1
+
x
2
200
199
mpteq2dva
⊢
⊤
→
x
∈
S
⟼
1
x
+
i
−
1
x
−
i
=
x
∈
S
⟼
2
i
1
+
x
2
201
138
200
eqtrd
⊢
⊤
→
d
x
∈
S
log
1
−
i
x
−
log
1
+
i
x
d
ℂ
x
=
x
∈
S
⟼
2
i
1
+
x
2
202
halfcl
⊢
i
∈
ℂ
→
i
2
∈
ℂ
203
6
202
mp1i
⊢
⊤
→
i
2
∈
ℂ
204
4
23
24
201
203
dvmptcmul
⊢
⊤
→
d
x
∈
S
i
2
log
1
−
i
x
−
log
1
+
i
x
d
ℂ
x
=
x
∈
S
⟼
i
2
2
i
1
+
x
2
205
df-atan
⊢
arctan
=
x
∈
ℂ
∖
−
i
i
⟼
i
2
log
1
−
i
x
−
log
1
+
i
x
206
205
reseq1i
⊢
arctan
↾
S
=
x
∈
ℂ
∖
−
i
i
⟼
i
2
log
1
−
i
x
−
log
1
+
i
x
↾
S
207
atanf
⊢
arctan
:
ℂ
∖
−
i
i
⟶
ℂ
208
207
fdmi
⊢
dom
arctan
=
ℂ
∖
−
i
i
209
7
208
sseqtri
⊢
S
⊆
ℂ
∖
−
i
i
210
resmpt
⊢
S
⊆
ℂ
∖
−
i
i
→
x
∈
ℂ
∖
−
i
i
⟼
i
2
log
1
−
i
x
−
log
1
+
i
x
↾
S
=
x
∈
S
⟼
i
2
log
1
−
i
x
−
log
1
+
i
x
211
209
210
ax-mp
⊢
x
∈
ℂ
∖
−
i
i
⟼
i
2
log
1
−
i
x
−
log
1
+
i
x
↾
S
=
x
∈
S
⟼
i
2
log
1
−
i
x
−
log
1
+
i
x
212
206
211
eqtri
⊢
arctan
↾
S
=
x
∈
S
⟼
i
2
log
1
−
i
x
−
log
1
+
i
x
213
212
a1i
⊢
⊤
→
arctan
↾
S
=
x
∈
S
⟼
i
2
log
1
−
i
x
−
log
1
+
i
x
214
213
oveq2d
⊢
⊤
→
ℂ
D
arctan
↾
S
=
d
x
∈
S
i
2
log
1
−
i
x
−
log
1
+
i
x
d
ℂ
x
215
2ne0
⊢
2
≠
0
216
divcan6
⊢
i
∈
ℂ
∧
i
≠
0
∧
2
∈
ℂ
∧
2
≠
0
→
i
2
2
i
=
1
217
6
84
154
215
216
mp4an
⊢
i
2
2
i
=
1
218
217
oveq1i
⊢
i
2
2
i
1
+
x
2
=
1
1
+
x
2
219
6
202
mp1i
⊢
⊤
∧
x
∈
S
→
i
2
∈
ℂ
220
154
6
84
divcli
⊢
2
i
∈
ℂ
221
220
a1i
⊢
⊤
∧
x
∈
S
→
2
i
∈
ℂ
222
219
221
145
148
divassd
⊢
⊤
∧
x
∈
S
→
i
2
2
i
1
+
x
2
=
i
2
2
i
1
+
x
2
223
218
222
eqtr3id
⊢
⊤
∧
x
∈
S
→
1
1
+
x
2
=
i
2
2
i
1
+
x
2
224
223
mpteq2dva
⊢
⊤
→
x
∈
S
⟼
1
1
+
x
2
=
x
∈
S
⟼
i
2
2
i
1
+
x
2
225
204
214
224
3eqtr4d
⊢
⊤
→
ℂ
D
arctan
↾
S
=
x
∈
S
⟼
1
1
+
x
2
226
225
mptru
⊢
ℂ
D
arctan
↾
S
=
x
∈
S
⟼
1
1
+
x
2