| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dyadmbl.1 |
|
| 2 |
|
dyadmbl.2 |
|
| 3 |
|
dyadmbl.3 |
|
| 4 |
1 2 3
|
dyadmbllem |
|
| 5 |
|
isfinite |
|
| 6 |
|
iccf |
|
| 7 |
|
ffun |
|
| 8 |
|
funiunfv |
|
| 9 |
6 7 8
|
mp2b |
|
| 10 |
|
simpr |
|
| 11 |
2
|
ssrab3 |
|
| 12 |
11 3
|
sstrid |
|
| 13 |
1
|
dyadf |
|
| 14 |
|
frn |
|
| 15 |
13 14
|
ax-mp |
|
| 16 |
|
inss2 |
|
| 17 |
15 16
|
sstri |
|
| 18 |
12 17
|
sstrdi |
|
| 19 |
18
|
adantr |
|
| 20 |
19
|
sselda |
|
| 21 |
|
1st2nd2 |
|
| 22 |
20 21
|
syl |
|
| 23 |
22
|
fveq2d |
|
| 24 |
|
df-ov |
|
| 25 |
23 24
|
eqtr4di |
|
| 26 |
|
xp1st |
|
| 27 |
20 26
|
syl |
|
| 28 |
|
xp2nd |
|
| 29 |
20 28
|
syl |
|
| 30 |
|
iccmbl |
|
| 31 |
27 29 30
|
syl2anc |
|
| 32 |
25 31
|
eqeltrd |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
|
finiunmbl |
|
| 35 |
10 33 34
|
syl2anc |
|
| 36 |
9 35
|
eqeltrrid |
|
| 37 |
5 36
|
sylan2br |
|
| 38 |
|
rnco2 |
|
| 39 |
|
f1ofo |
|
| 40 |
39
|
adantl |
|
| 41 |
|
forn |
|
| 42 |
40 41
|
syl |
|
| 43 |
42
|
imaeq2d |
|
| 44 |
38 43
|
eqtrid |
|
| 45 |
44
|
unieqd |
|
| 46 |
|
f1of |
|
| 47 |
12 15
|
sstrdi |
|
| 48 |
|
fss |
|
| 49 |
46 47 48
|
syl2anr |
|
| 50 |
|
fss |
|
| 51 |
46 12 50
|
syl2anr |
|
| 52 |
|
simpl |
|
| 53 |
|
ffvelcdm |
|
| 54 |
51 52 53
|
syl2an |
|
| 55 |
|
simpr |
|
| 56 |
|
ffvelcdm |
|
| 57 |
51 55 56
|
syl2an |
|
| 58 |
1
|
dyaddisj |
|
| 59 |
54 57 58
|
syl2anc |
|
| 60 |
|
fveq2 |
|
| 61 |
60
|
sseq2d |
|
| 62 |
|
eqeq2 |
|
| 63 |
61 62
|
imbi12d |
|
| 64 |
46
|
adantl |
|
| 65 |
|
ffvelcdm |
|
| 66 |
64 52 65
|
syl2an |
|
| 67 |
|
fveq2 |
|
| 68 |
67
|
sseq1d |
|
| 69 |
|
eqeq1 |
|
| 70 |
68 69
|
imbi12d |
|
| 71 |
70
|
ralbidv |
|
| 72 |
71 2
|
elrab2 |
|
| 73 |
72
|
simprbi |
|
| 74 |
66 73
|
syl |
|
| 75 |
|
ffvelcdm |
|
| 76 |
64 55 75
|
syl2an |
|
| 77 |
11 76
|
sselid |
|
| 78 |
63 74 77
|
rspcdva |
|
| 79 |
|
f1of1 |
|
| 80 |
79
|
adantl |
|
| 81 |
|
f1fveq |
|
| 82 |
80 81
|
sylan |
|
| 83 |
|
orc |
|
| 84 |
82 83
|
biimtrdi |
|
| 85 |
78 84
|
syld |
|
| 86 |
|
fveq2 |
|
| 87 |
86
|
sseq2d |
|
| 88 |
|
eqeq2 |
|
| 89 |
|
eqcom |
|
| 90 |
88 89
|
bitrdi |
|
| 91 |
87 90
|
imbi12d |
|
| 92 |
|
fveq2 |
|
| 93 |
92
|
sseq1d |
|
| 94 |
|
eqeq1 |
|
| 95 |
93 94
|
imbi12d |
|
| 96 |
95
|
ralbidv |
|
| 97 |
96 2
|
elrab2 |
|
| 98 |
97
|
simprbi |
|
| 99 |
76 98
|
syl |
|
| 100 |
11 66
|
sselid |
|
| 101 |
91 99 100
|
rspcdva |
|
| 102 |
101 84
|
syld |
|
| 103 |
|
olc |
|
| 104 |
103
|
a1i |
|
| 105 |
85 102 104
|
3jaod |
|
| 106 |
59 105
|
mpd |
|
| 107 |
106
|
ralrimivva |
|
| 108 |
|
2fveq3 |
|
| 109 |
108
|
disjor |
|
| 110 |
107 109
|
sylibr |
|
| 111 |
|
eqid |
|
| 112 |
49 110 111
|
uniiccmbl |
|
| 113 |
45 112
|
eqeltrrd |
|
| 114 |
113
|
ex |
|
| 115 |
114
|
exlimdv |
|
| 116 |
|
nnenom |
|
| 117 |
|
ensym |
|
| 118 |
|
entr |
|
| 119 |
116 117 118
|
sylancr |
|
| 120 |
|
bren |
|
| 121 |
119 120
|
sylib |
|
| 122 |
115 121
|
impel |
|
| 123 |
|
reex |
|
| 124 |
123 123
|
xpex |
|
| 125 |
124
|
inex2 |
|
| 126 |
125 15
|
ssexi |
|
| 127 |
|
ssdomg |
|
| 128 |
126 12 127
|
mpsyl |
|
| 129 |
|
omelon |
|
| 130 |
|
znnen |
|
| 131 |
130 116
|
entri |
|
| 132 |
|
nn0ennn |
|
| 133 |
132 116
|
entri |
|
| 134 |
|
xpen |
|
| 135 |
131 133 134
|
mp2an |
|
| 136 |
|
xpomen |
|
| 137 |
135 136
|
entri |
|
| 138 |
137
|
ensymi |
|
| 139 |
|
isnumi |
|
| 140 |
129 138 139
|
mp2an |
|
| 141 |
|
ffn |
|
| 142 |
13 141
|
ax-mp |
|
| 143 |
|
dffn4 |
|
| 144 |
142 143
|
mpbi |
|
| 145 |
|
fodomnum |
|
| 146 |
140 144 145
|
mp2 |
|
| 147 |
|
domentr |
|
| 148 |
146 137 147
|
mp2an |
|
| 149 |
|
domtr |
|
| 150 |
128 148 149
|
sylancl |
|
| 151 |
|
brdom2 |
|
| 152 |
150 151
|
sylib |
|
| 153 |
37 122 152
|
mpjaodan |
|
| 154 |
4 153
|
eqeltrd |
|