Metamath Proof Explorer


Theorem dyadmbl

Description: Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypotheses dyadmbl.1 F=x,y0x2yx+12y
dyadmbl.2 G=zA|wA.z.wz=w
dyadmbl.3 φAranF
Assertion dyadmbl φ.Adomvol

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F=x,y0x2yx+12y
2 dyadmbl.2 G=zA|wA.z.wz=w
3 dyadmbl.3 φAranF
4 1 2 3 dyadmbllem φ.A=.G
5 isfinite GFinGω
6 iccf .:*×*𝒫*
7 ffun .:*×*𝒫*Fun.
8 funiunfv Fun.nG.n=.G
9 6 7 8 mp2b nG.n=.G
10 simpr φGFinGFin
11 2 ssrab3 GA
12 11 3 sstrid φGranF
13 1 dyadf F:×02
14 frn F:×02ranF2
15 13 14 ax-mp ranF2
16 inss2 22
17 15 16 sstri ranF2
18 12 17 sstrdi φG2
19 18 adantr φGFinG2
20 19 sselda φGFinnGn2
21 1st2nd2 n2n=1stn2ndn
22 20 21 syl φGFinnGn=1stn2ndn
23 22 fveq2d φGFinnG.n=.1stn2ndn
24 df-ov 1stn2ndn=.1stn2ndn
25 23 24 eqtr4di φGFinnG.n=1stn2ndn
26 xp1st n21stn
27 20 26 syl φGFinnG1stn
28 xp2nd n22ndn
29 20 28 syl φGFinnG2ndn
30 iccmbl 1stn2ndn1stn2ndndomvol
31 27 29 30 syl2anc φGFinnG1stn2ndndomvol
32 25 31 eqeltrd φGFinnG.ndomvol
33 32 ralrimiva φGFinnG.ndomvol
34 finiunmbl GFinnG.ndomvolnG.ndomvol
35 10 33 34 syl2anc φGFinnG.ndomvol
36 9 35 eqeltrrid φGFin.Gdomvol
37 5 36 sylan2br φGω.Gdomvol
38 rnco2 ran.f=.ranf
39 f1ofo f:1-1 ontoGf:ontoG
40 39 adantl φf:1-1 ontoGf:ontoG
41 forn f:ontoGranf=G
42 40 41 syl φf:1-1 ontoGranf=G
43 42 imaeq2d φf:1-1 ontoG.ranf=.G
44 38 43 eqtrid φf:1-1 ontoGran.f=.G
45 44 unieqd φf:1-1 ontoGran.f=.G
46 f1of f:1-1 ontoGf:G
47 12 15 sstrdi φG2
48 fss f:GG2f:2
49 46 47 48 syl2anr φf:1-1 ontoGf:2
50 fss f:GGranFf:ranF
51 46 12 50 syl2anr φf:1-1 ontoGf:ranF
52 simpl aba
53 ffvelcdm f:ranFafaranF
54 51 52 53 syl2an φf:1-1 ontoGabfaranF
55 simpr abb
56 ffvelcdm f:ranFbfbranF
57 51 55 56 syl2an φf:1-1 ontoGabfbranF
58 1 dyaddisj faranFfbranF.fa.fb.fb.fa.fa.fb=
59 54 57 58 syl2anc φf:1-1 ontoGab.fa.fb.fb.fa.fa.fb=
60 fveq2 w=fb.w=.fb
61 60 sseq2d w=fb.fa.w.fa.fb
62 eqeq2 w=fbfa=wfa=fb
63 61 62 imbi12d w=fb.fa.wfa=w.fa.fbfa=fb
64 46 adantl φf:1-1 ontoGf:G
65 ffvelcdm f:GafaG
66 64 52 65 syl2an φf:1-1 ontoGabfaG
67 fveq2 z=fa.z=.fa
68 67 sseq1d z=fa.z.w.fa.w
69 eqeq1 z=faz=wfa=w
70 68 69 imbi12d z=fa.z.wz=w.fa.wfa=w
71 70 ralbidv z=fawA.z.wz=wwA.fa.wfa=w
72 71 2 elrab2 faGfaAwA.fa.wfa=w
73 72 simprbi faGwA.fa.wfa=w
74 66 73 syl φf:1-1 ontoGabwA.fa.wfa=w
75 ffvelcdm f:GbfbG
76 64 55 75 syl2an φf:1-1 ontoGabfbG
77 11 76 sselid φf:1-1 ontoGabfbA
78 63 74 77 rspcdva φf:1-1 ontoGab.fa.fbfa=fb
79 f1of1 f:1-1 ontoGf:1-1G
80 79 adantl φf:1-1 ontoGf:1-1G
81 f1fveq f:1-1Gabfa=fba=b
82 80 81 sylan φf:1-1 ontoGabfa=fba=b
83 orc a=ba=b.fa.fb=
84 82 83 syl6bi φf:1-1 ontoGabfa=fba=b.fa.fb=
85 78 84 syld φf:1-1 ontoGab.fa.fba=b.fa.fb=
86 fveq2 w=fa.w=.fa
87 86 sseq2d w=fa.fb.w.fb.fa
88 eqeq2 w=fafb=wfb=fa
89 eqcom fb=fafa=fb
90 88 89 bitrdi w=fafb=wfa=fb
91 87 90 imbi12d w=fa.fb.wfb=w.fb.fafa=fb
92 fveq2 z=fb.z=.fb
93 92 sseq1d z=fb.z.w.fb.w
94 eqeq1 z=fbz=wfb=w
95 93 94 imbi12d z=fb.z.wz=w.fb.wfb=w
96 95 ralbidv z=fbwA.z.wz=wwA.fb.wfb=w
97 96 2 elrab2 fbGfbAwA.fb.wfb=w
98 97 simprbi fbGwA.fb.wfb=w
99 76 98 syl φf:1-1 ontoGabwA.fb.wfb=w
100 11 66 sselid φf:1-1 ontoGabfaA
101 91 99 100 rspcdva φf:1-1 ontoGab.fb.fafa=fb
102 101 84 syld φf:1-1 ontoGab.fb.faa=b.fa.fb=
103 olc .fa.fb=a=b.fa.fb=
104 103 a1i φf:1-1 ontoGab.fa.fb=a=b.fa.fb=
105 85 102 104 3jaod φf:1-1 ontoGab.fa.fb.fb.fa.fa.fb=a=b.fa.fb=
106 59 105 mpd φf:1-1 ontoGaba=b.fa.fb=
107 106 ralrimivva φf:1-1 ontoGaba=b.fa.fb=
108 2fveq3 a=b.fa=.fb
109 108 disjor Disja.faaba=b.fa.fb=
110 107 109 sylibr φf:1-1 ontoGDisja.fa
111 eqid seq1+absf=seq1+absf
112 49 110 111 uniiccmbl φf:1-1 ontoGran.fdomvol
113 45 112 eqeltrrd φf:1-1 ontoG.Gdomvol
114 113 ex φf:1-1 ontoG.Gdomvol
115 114 exlimdv φff:1-1 ontoG.Gdomvol
116 nnenom ω
117 ensym GωωG
118 entr ωωGG
119 116 117 118 sylancr GωG
120 bren Gff:1-1 ontoG
121 119 120 sylib Gωff:1-1 ontoG
122 115 121 impel φGω.Gdomvol
123 reex V
124 123 123 xpex 2V
125 124 inex2 2V
126 125 15 ssexi ranFV
127 ssdomg ranFVGranFGranF
128 126 12 127 mpsyl φGranF
129 omelon ωOn
130 znnen
131 130 116 entri ω
132 nn0ennn 0
133 132 116 entri 0ω
134 xpen ω0ω×0ω×ω
135 131 133 134 mp2an ×0ω×ω
136 xpomen ω×ωω
137 135 136 entri ×0ω
138 137 ensymi ω×0
139 isnumi ωOnω×0×0domcard
140 129 138 139 mp2an ×0domcard
141 ffn F:×02FFn×0
142 13 141 ax-mp FFn×0
143 dffn4 FFn×0F:×0ontoranF
144 142 143 mpbi F:×0ontoranF
145 fodomnum ×0domcardF:×0ontoranFranF×0
146 140 144 145 mp2 ranF×0
147 domentr ranF×0×0ωranFω
148 146 137 147 mp2an ranFω
149 domtr GranFranFωGω
150 128 148 149 sylancl φGω
151 brdom2 GωGωGω
152 150 151 sylib φGωGω
153 37 122 152 mpjaodan φ.Gdomvol
154 4 153 eqeltrd φ.Adomvol