Metamath Proof Explorer


Theorem extdgfialglem2

Description: Lemma for extdgfialg . (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses extdgfialg.b B = Base E
extdgfialg.d D = dim subringAlg E F
extdgfialg.e φ E Field
extdgfialg.f φ F SubDRing E
extdgfialg.1 φ D 0
extdgfialglem1.2 Z = 0 E
extdgfialglem1.3 · ˙ = E
extdgfialglem1.r G = n 0 D n mulGrp subringAlg E F X
extdgfialglem1.4 φ X B
extdgfialglem2.1 φ A : 0 D F
extdgfialglem2.2 φ finSupp Z A
extdgfialglem2.3 φ E A · ˙ f G = Z
extdgfialglem2.4 φ A 0 D × Z
Assertion extdgfialglem2 φ X E IntgRing F

Proof

Step Hyp Ref Expression
1 extdgfialg.b B = Base E
2 extdgfialg.d D = dim subringAlg E F
3 extdgfialg.e φ E Field
4 extdgfialg.f φ F SubDRing E
5 extdgfialg.1 φ D 0
6 extdgfialglem1.2 Z = 0 E
7 extdgfialglem1.3 · ˙ = E
8 extdgfialglem1.r G = n 0 D n mulGrp subringAlg E F X
9 extdgfialglem1.4 φ X B
10 extdgfialglem2.1 φ A : 0 D F
11 extdgfialglem2.2 φ finSupp Z A
12 extdgfialglem2.3 φ E A · ˙ f G = Z
13 extdgfialglem2.4 φ A 0 D × Z
14 eqid E evalSub 1 F = E evalSub 1 F
15 eqid 0 Poly 1 E = 0 Poly 1 E
16 eqid Base Poly 1 E 𝑠 F = Base Poly 1 E 𝑠 F
17 eqid 0 Poly 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
18 sdrgsubrg F SubDRing E F SubRing E
19 4 18 syl φ F SubRing E
20 eqid E 𝑠 F = E 𝑠 F
21 20 subrgring F SubRing E E 𝑠 F Ring
22 19 21 syl φ E 𝑠 F Ring
23 eqid Poly 1 E 𝑠 F = Poly 1 E 𝑠 F
24 23 ply1ring E 𝑠 F Ring Poly 1 E 𝑠 F Ring
25 22 24 syl φ Poly 1 E 𝑠 F Ring
26 25 ringcmnd φ Poly 1 E 𝑠 F CMnd
27 fzfid φ 0 D Fin
28 eqid Scalar Poly 1 E 𝑠 F = Scalar Poly 1 E 𝑠 F
29 eqid Poly 1 E 𝑠 F = Poly 1 E 𝑠 F
30 eqid Base Scalar Poly 1 E 𝑠 F = Base Scalar Poly 1 E 𝑠 F
31 23 ply1lmod E 𝑠 F Ring Poly 1 E 𝑠 F LMod
32 22 31 syl φ Poly 1 E 𝑠 F LMod
33 32 adantr φ n 0 D Poly 1 E 𝑠 F LMod
34 10 ffvelcdmda φ n 0 D A n F
35 1 sdrgss F SubDRing E F B
36 4 35 syl φ F B
37 20 1 ressbas2 F B F = Base E 𝑠 F
38 36 37 syl φ F = Base E 𝑠 F
39 ovex E 𝑠 F V
40 23 ply1sca E 𝑠 F V E 𝑠 F = Scalar Poly 1 E 𝑠 F
41 39 40 ax-mp E 𝑠 F = Scalar Poly 1 E 𝑠 F
42 41 fveq2i Base E 𝑠 F = Base Scalar Poly 1 E 𝑠 F
43 38 42 eqtr2di φ Base Scalar Poly 1 E 𝑠 F = F
44 43 adantr φ n 0 D Base Scalar Poly 1 E 𝑠 F = F
45 34 44 eleqtrrd φ n 0 D A n Base Scalar Poly 1 E 𝑠 F
46 eqid mulGrp Poly 1 E 𝑠 F = mulGrp Poly 1 E 𝑠 F
47 46 16 mgpbas Base Poly 1 E 𝑠 F = Base mulGrp Poly 1 E 𝑠 F
48 eqid mulGrp Poly 1 E 𝑠 F = mulGrp Poly 1 E 𝑠 F
49 46 ringmgp Poly 1 E 𝑠 F Ring mulGrp Poly 1 E 𝑠 F Mnd
50 25 49 syl φ mulGrp Poly 1 E 𝑠 F Mnd
51 50 adantr φ n 0 D mulGrp Poly 1 E 𝑠 F Mnd
52 fz0ssnn0 0 D 0
53 52 a1i φ 0 D 0
54 53 sselda φ n 0 D n 0
55 eqid var 1 E 𝑠 F = var 1 E 𝑠 F
56 55 23 16 vr1cl E 𝑠 F Ring var 1 E 𝑠 F Base Poly 1 E 𝑠 F
57 22 56 syl φ var 1 E 𝑠 F Base Poly 1 E 𝑠 F
58 57 adantr φ n 0 D var 1 E 𝑠 F Base Poly 1 E 𝑠 F
59 47 48 51 54 58 mulgnn0cld φ n 0 D n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F Base Poly 1 E 𝑠 F
60 16 28 29 30 33 45 59 lmodvscld φ n 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F Base Poly 1 E 𝑠 F
61 60 fmpttd φ n 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F : 0 D Base Poly 1 E 𝑠 F
62 eqid n 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = n 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
63 fvexd φ 0 Poly 1 E 𝑠 F V
64 62 27 60 63 fsuppmptdm φ finSupp 0 Poly 1 E 𝑠 F n 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
65 16 17 26 27 61 64 gsumcl φ Poly 1 E 𝑠 F n = 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F Base Poly 1 E 𝑠 F
66 3 fldcrngd φ E CRing
67 14 23 16 66 19 evls1dm φ dom E evalSub 1 F = Base Poly 1 E 𝑠 F
68 65 67 eleqtrrd φ Poly 1 E 𝑠 F n = 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F dom E evalSub 1 F
69 eqid Base E 𝑠 F = Base E 𝑠 F
70 eqid 0 E 𝑠 F = 0 E 𝑠 F
71 10 ffvelcdmda φ m 0 D A m F
72 71 adantlr φ m 0 m 0 D A m F
73 38 ad2antrr φ m 0 m 0 D F = Base E 𝑠 F
74 72 73 eleqtrd φ m 0 m 0 D A m Base E 𝑠 F
75 subrgsubg F SubRing E F SubGrp E
76 19 75 syl φ F SubGrp E
77 6 subg0cl F SubGrp E Z F
78 76 77 syl φ Z F
79 78 38 eleqtrd φ Z Base E 𝑠 F
80 79 ad2antrr φ m 0 ¬ m 0 D Z Base E 𝑠 F
81 74 80 ifclda φ m 0 if m 0 D A m Z Base E 𝑠 F
82 81 ralrimiva φ m 0 if m 0 D A m Z Base E 𝑠 F
83 eqid m 0 if m 0 D A m Z = m 0 if m 0 D A m Z
84 nn0ex 0 V
85 84 a1i φ 0 V
86 83 85 27 71 78 mptiffisupp φ finSupp Z m 0 if m 0 D A m Z
87 66 crngringd φ E Ring
88 87 ringcmnd φ E CMnd
89 88 cmnmndd φ E Mnd
90 20 1 6 ress0g E Mnd Z F F B Z = 0 E 𝑠 F
91 89 78 36 90 syl3anc φ Z = 0 E 𝑠 F
92 86 91 breqtrd φ finSupp 0 E 𝑠 F m 0 if m 0 D A m Z
93 79 ralrimivw φ m 0 Z Base E 𝑠 F
94 fconstmpt 0 × Z = m 0 Z
95 85 78 fczfsuppd φ finSupp Z 0 × Z
96 94 95 eqbrtrrid φ finSupp Z m 0 Z
97 96 91 breqtrd φ finSupp 0 E 𝑠 F m 0 Z
98 simpr φ m 0 0 D m 0 0 D
99 98 eldifbd φ m 0 0 D ¬ m 0 D
100 99 iffalsed φ m 0 0 D if m 0 D A m Z = Z
101 91 adantr φ m 0 0 D Z = 0 E 𝑠 F
102 100 101 eqtrd φ m 0 0 D if m 0 D A m Z = 0 E 𝑠 F
103 102 oveq1d φ m 0 0 D if m 0 D A m Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = 0 E 𝑠 F Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
104 32 adantr φ m 0 0 D Poly 1 E 𝑠 F LMod
105 50 adantr φ m 0 0 D mulGrp Poly 1 E 𝑠 F Mnd
106 98 eldifad φ m 0 0 D m 0
107 57 adantr φ m 0 0 D var 1 E 𝑠 F Base Poly 1 E 𝑠 F
108 47 48 105 106 107 mulgnn0cld φ m 0 0 D m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F Base Poly 1 E 𝑠 F
109 16 41 29 70 17 lmod0vs Poly 1 E 𝑠 F LMod m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F Base Poly 1 E 𝑠 F 0 E 𝑠 F Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
110 104 108 109 syl2anc φ m 0 0 D 0 E 𝑠 F Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
111 103 110 eqtrd φ m 0 0 D if m 0 D A m Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
112 32 adantr φ m 0 Poly 1 E 𝑠 F LMod
113 50 adantr φ m 0 mulGrp Poly 1 E 𝑠 F Mnd
114 simpr φ m 0 m 0
115 57 adantr φ m 0 var 1 E 𝑠 F Base Poly 1 E 𝑠 F
116 47 48 113 114 115 mulgnn0cld φ m 0 m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F Base Poly 1 E 𝑠 F
117 16 41 29 69 112 81 116 lmodvscld φ m 0 if m 0 D A m Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F Base Poly 1 E 𝑠 F
118 16 17 26 85 111 27 117 53 gsummptres2 φ Poly 1 E 𝑠 F m 0 if m 0 D A m Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = Poly 1 E 𝑠 F m = 0 D if m 0 D A m Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
119 eleq1w m = n m 0 D n 0 D
120 fveq2 m = n A m = A n
121 119 120 ifbieq1d m = n if m 0 D A m Z = if n 0 D A n Z
122 oveq1 m = n m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
123 121 122 oveq12d m = n if m 0 D A m Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = if n 0 D A n Z Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
124 123 cbvmptv m 0 D if m 0 D A m Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = n 0 D if n 0 D A n Z Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
125 simpr φ n 0 D n 0 D
126 125 iftrued φ n 0 D if n 0 D A n Z = A n
127 126 oveq1d φ n 0 D if n 0 D A n Z Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
128 127 mpteq2dva φ n 0 D if n 0 D A n Z Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = n 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
129 124 128 eqtrid φ m 0 D if m 0 D A m Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = n 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
130 129 oveq2d φ Poly 1 E 𝑠 F m = 0 D if m 0 D A m Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = Poly 1 E 𝑠 F n = 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
131 118 130 eqtr2d φ Poly 1 E 𝑠 F n = 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = Poly 1 E 𝑠 F m 0 if m 0 D A m Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
132 26 cmnmndd φ Poly 1 E 𝑠 F Mnd
133 17 gsumz Poly 1 E 𝑠 F Mnd 0 V Poly 1 E 𝑠 F m 0 0 Poly 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
134 132 85 133 syl2anc φ Poly 1 E 𝑠 F m 0 0 Poly 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
135 91 adantr φ m 0 Z = 0 E 𝑠 F
136 135 oveq1d φ m 0 Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = 0 E 𝑠 F Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
137 112 116 109 syl2anc φ m 0 0 E 𝑠 F Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
138 136 137 eqtrd φ m 0 Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = 0 Poly 1 E 𝑠 F
139 138 mpteq2dva φ m 0 Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = m 0 0 Poly 1 E 𝑠 F
140 139 oveq2d φ Poly 1 E 𝑠 F m 0 Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = Poly 1 E 𝑠 F m 0 0 Poly 1 E 𝑠 F
141 eqid Poly 1 E = Poly 1 E
142 141 20 23 16 19 15 ressply10g φ 0 Poly 1 E = 0 Poly 1 E 𝑠 F
143 134 140 142 3eqtr4rd φ 0 Poly 1 E = Poly 1 E 𝑠 F m 0 Z Poly 1 E 𝑠 F m mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
144 23 55 48 22 69 29 70 82 92 93 97 131 143 gsumply1eq φ Poly 1 E 𝑠 F n = 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = 0 Poly 1 E m 0 if m 0 D A m Z = Z
145 10 ffnd φ A Fn 0 D
146 145 adantr φ m 0 if m 0 D A m Z = Z A Fn 0 D
147 126 adantlr φ m 0 if m 0 D A m Z = Z n 0 D if n 0 D A n Z = A n
148 121 eqeq1d m = n if m 0 D A m Z = Z if n 0 D A n Z = Z
149 simplr φ m 0 if m 0 D A m Z = Z n 0 D m 0 if m 0 D A m Z = Z
150 52 a1i φ m 0 if m 0 D A m Z = Z 0 D 0
151 150 sselda φ m 0 if m 0 D A m Z = Z n 0 D n 0
152 148 149 151 rspcdva φ m 0 if m 0 D A m Z = Z n 0 D if n 0 D A n Z = Z
153 147 152 eqtr3d φ m 0 if m 0 D A m Z = Z n 0 D A n = Z
154 146 153 fconst7v φ m 0 if m 0 D A m Z = Z A = 0 D × Z
155 154 ex φ m 0 if m 0 D A m Z = Z A = 0 D × Z
156 144 155 sylbid φ Poly 1 E 𝑠 F n = 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = 0 Poly 1 E A = 0 D × Z
157 156 necon3d φ A 0 D × Z Poly 1 E 𝑠 F n = 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F 0 Poly 1 E
158 13 157 mpd φ Poly 1 E 𝑠 F n = 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F 0 Poly 1 E
159 eqid E 𝑠 B = E 𝑠 B
160 14 1 23 17 20 159 16 66 19 60 53 64 evls1gsumadd φ E evalSub 1 F Poly 1 E 𝑠 F n = 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = E 𝑠 B n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F
161 160 fveq1d φ E evalSub 1 F Poly 1 E 𝑠 F n = 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X = E 𝑠 B n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X
162 66 adantr φ n 0 D E CRing
163 19 adantr φ n 0 D F SubRing E
164 14 23 16 162 163 1 60 evls1fvf φ n 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F : B B
165 164 feqmptd φ n 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = x B E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x
166 165 mpteq2dva φ n 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = n 0 D x B E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x
167 166 oveq2d φ E 𝑠 B n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F = E 𝑠 B n = 0 D x B E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x
168 167 fveq1d φ E 𝑠 B n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X = E 𝑠 B n = 0 D x B E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x X
169 eqid 0 E 𝑠 B = 0 E 𝑠 B
170 1 fvexi B V
171 170 a1i φ B V
172 162 adantr φ n 0 D x B E CRing
173 163 adantr φ n 0 D x B F SubRing E
174 simpr φ n 0 D x B x B
175 60 adantr φ n 0 D x B A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F Base Poly 1 E 𝑠 F
176 14 23 1 16 172 173 174 175 evls1fvcl φ n 0 D x B E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x B
177 176 an32s φ x B n 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x B
178 177 anasss φ x B n 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x B
179 eqid n 0 D x B E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x = n 0 D x B E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x
180 170 a1i φ n 0 D B V
181 180 mptexd φ n 0 D x B E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x V
182 fvexd φ 0 E 𝑠 B V
183 179 27 181 182 fsuppmptdm φ finSupp 0 E 𝑠 B n 0 D x B E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x
184 159 1 169 171 27 88 178 183 pwsgsum φ E 𝑠 B n = 0 D x B E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x = x B E n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x
185 184 fveq1d φ E 𝑠 B n = 0 D x B E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x X = x B E n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x X
186 168 185 eqtrd φ E 𝑠 B n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X = x B E n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x X
187 fveq2 x = X E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x = E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X
188 187 mpteq2dv x = X n 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x = n 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X
189 188 oveq2d x = X E n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x = E n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X
190 eqidd φ x B E n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x = x B E n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x
191 ovexd φ E n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X V
192 189 190 9 191 fvmptd4 φ x B E n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F x X = E n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X
193 eqid mulGrp E = mulGrp E
194 9 adantr φ n 0 D X B
195 14 1 23 20 55 48 193 29 7 162 163 34 54 194 evls1monply1 φ n 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X = A n · ˙ n mulGrp E X
196 195 mpteq2dva φ n 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X = n 0 D A n · ˙ n mulGrp E X
197 nfv n φ
198 ovexd φ n 0 D n mulGrp subringAlg E F X V
199 197 198 8 fnmptd φ G Fn 0 D
200 inidm 0 D 0 D = 0 D
201 eqidd φ n 0 D A n = A n
202 8 fvmpt2 n 0 D n mulGrp subringAlg E F X V G n = n mulGrp subringAlg E F X
203 125 198 202 syl2anc φ n 0 D G n = n mulGrp subringAlg E F X
204 eqid subringAlg E F = subringAlg E F
205 36 1 sseqtrdi φ F Base E
206 204 87 205 srapwov φ mulGrp E = mulGrp subringAlg E F
207 206 oveqd φ n mulGrp E X = n mulGrp subringAlg E F X
208 207 adantr φ n 0 D n mulGrp E X = n mulGrp subringAlg E F X
209 203 208 eqtr4d φ n 0 D G n = n mulGrp E X
210 145 199 27 27 200 201 209 offval φ A · ˙ f G = n 0 D A n · ˙ n mulGrp E X
211 196 210 eqtr4d φ n 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X = A · ˙ f G
212 211 oveq2d φ E n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X = E A · ˙ f G
213 186 192 212 3eqtrd φ E 𝑠 B n = 0 D E evalSub 1 F A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X = E A · ˙ f G
214 161 213 12 3eqtrd φ E evalSub 1 F Poly 1 E 𝑠 F n = 0 D A n Poly 1 E 𝑠 F n mulGrp Poly 1 E 𝑠 F var 1 E 𝑠 F X = Z
215 14 15 6 3 4 1 68 158 214 9 irngnzply1lem φ X E IntgRing F