Metamath Proof Explorer


Theorem fprod2dlem

Description: Lemma for fprod2d - induction step. (Contributed by Scott Fenton, 30-Jan-2018)

Ref Expression
Hypotheses fprod2d.1 z=jkD=C
fprod2d.2 φAFin
fprod2d.3 φjABFin
fprod2d.4 φjAkBC
fprod2d.5 φ¬yx
fprod2d.6 φxyA
fprod2d.7 ψjxkBC=zjxj×BD
Assertion fprod2dlem φψjxykBC=zjxyj×BD

Proof

Step Hyp Ref Expression
1 fprod2d.1 z=jkD=C
2 fprod2d.2 φAFin
3 fprod2d.3 φjABFin
4 fprod2d.4 φjAkBC
5 fprod2d.5 φ¬yx
6 fprod2d.6 φxyA
7 fprod2d.7 ψjxkBC=zjxj×BD
8 simpr φψψ
9 8 7 sylib φψjxkBC=zjxj×BD
10 nfcv _mkBC
11 nfcsb1v _jm/jB
12 nfcsb1v _jm/jC
13 11 12 nfcprod _jkm/jBm/jC
14 csbeq1a j=mB=m/jB
15 csbeq1a j=mC=m/jC
16 15 adantr j=mkBC=m/jC
17 14 16 prodeq12dv j=mkBC=km/jBm/jC
18 10 13 17 cbvprodi jykBC=mykm/jBm/jC
19 6 unssbd φyA
20 vex yV
21 20 snss yAyA
22 19 21 sylibr φyA
23 3 ralrimiva φjABFin
24 nfcsb1v _jy/jB
25 24 nfel1 jy/jBFin
26 csbeq1a j=yB=y/jB
27 26 eleq1d j=yBFiny/jBFin
28 25 27 rspc yAjABFiny/jBFin
29 22 23 28 sylc φy/jBFin
30 4 ralrimivva φjAkBC
31 nfcsb1v _jy/jC
32 31 nfel1 jy/jC
33 24 32 nfralw jky/jBy/jC
34 csbeq1a j=yC=y/jC
35 34 eleq1d j=yCy/jC
36 26 35 raleqbidv j=ykBCky/jBy/jC
37 33 36 rspc yAjAkBCky/jBy/jC
38 22 30 37 sylc φky/jBy/jC
39 38 r19.21bi φky/jBy/jC
40 29 39 fprodcl φky/jBy/jC
41 csbeq1 m=ym/jB=y/jB
42 csbeq1 m=ym/jC=y/jC
43 42 adantr m=ykm/jBm/jC=y/jC
44 41 43 prodeq12dv m=ykm/jBm/jC=ky/jBy/jC
45 44 prodsn yAky/jBy/jCmykm/jBm/jC=ky/jBy/jC
46 22 40 45 syl2anc φmykm/jBm/jC=ky/jBy/jC
47 nfcv _my/jC
48 nfcsb1v _km/ky/jC
49 csbeq1a k=my/jC=m/ky/jC
50 47 48 49 cbvprodi ky/jBy/jC=my/jBm/ky/jC
51 csbeq1 m=2ndzm/ky/jC=2ndz/ky/jC
52 snfi yFin
53 xpfi yFiny/jBFiny×y/jBFin
54 52 29 53 sylancr φy×y/jBFin
55 2ndconst yA2ndy×y/jB:y×y/jB1-1 ontoy/jB
56 22 55 syl φ2ndy×y/jB:y×y/jB1-1 ontoy/jB
57 fvres zy×y/jB2ndy×y/jBz=2ndz
58 57 adantl φzy×y/jB2ndy×y/jBz=2ndz
59 48 nfel1 km/ky/jC
60 49 eleq1d k=my/jCm/ky/jC
61 59 60 rspc my/jBky/jBy/jCm/ky/jC
62 38 61 mpan9 φmy/jBm/ky/jC
63 51 54 56 58 62 fprodf1o φmy/jBm/ky/jC=zy×y/jB2ndz/ky/jC
64 elxp zy×y/jBmkz=mkmyky/jB
65 nfv jz=mk
66 nfv jmy
67 24 nfcri jky/jB
68 66 67 nfan jmyky/jB
69 65 68 nfan jz=mkmyky/jB
70 69 nfex jkz=mkmyky/jB
71 nfv mkz=jkj=ykB
72 opeq1 m=jmk=jk
73 72 eqeq2d m=jz=mkz=jk
74 eleq1w m=jmyjy
75 velsn jyj=y
76 74 75 bitrdi m=jmyj=y
77 76 anbi1d m=jmyky/jBj=yky/jB
78 26 eleq2d j=ykBky/jB
79 78 pm5.32i j=ykBj=yky/jB
80 77 79 bitr4di m=jmyky/jBj=ykB
81 73 80 anbi12d m=jz=mkmyky/jBz=jkj=ykB
82 81 exbidv m=jkz=mkmyky/jBkz=jkj=ykB
83 70 71 82 cbvexv1 mkz=mkmyky/jBjkz=jkj=ykB
84 64 83 bitri zy×y/jBjkz=jkj=ykB
85 nfv jφ
86 nfcv _j2ndz
87 86 31 nfcsbw _j2ndz/ky/jC
88 87 nfeq2 jD=2ndz/ky/jC
89 nfv kφ
90 nfcsb1v _k2ndz/ky/jC
91 90 nfeq2 kD=2ndz/ky/jC
92 1 ad2antlr φz=jkj=ykBD=C
93 34 ad2antrl φz=jkj=ykBC=y/jC
94 fveq2 z=jk2ndz=2ndjk
95 vex jV
96 vex kV
97 95 96 op2nd 2ndjk=k
98 94 97 eqtr2di z=jkk=2ndz
99 98 ad2antlr φz=jkj=ykBk=2ndz
100 csbeq1a k=2ndzy/jC=2ndz/ky/jC
101 99 100 syl φz=jkj=ykBy/jC=2ndz/ky/jC
102 92 93 101 3eqtrd φz=jkj=ykBD=2ndz/ky/jC
103 102 expl φz=jkj=ykBD=2ndz/ky/jC
104 89 91 103 exlimd φkz=jkj=ykBD=2ndz/ky/jC
105 85 88 104 exlimd φjkz=jkj=ykBD=2ndz/ky/jC
106 84 105 biimtrid φzy×y/jBD=2ndz/ky/jC
107 106 imp φzy×y/jBD=2ndz/ky/jC
108 107 prodeq2dv φzy×y/jBD=zy×y/jB2ndz/ky/jC
109 63 108 eqtr4d φmy/jBm/ky/jC=zy×y/jBD
110 50 109 eqtrid φky/jBy/jC=zy×y/jBD
111 46 110 eqtrd φmykm/jBm/jC=zy×y/jBD
112 18 111 eqtrid φjykBC=zy×y/jBD
113 112 adantr φψjykBC=zy×y/jBD
114 9 113 oveq12d φψjxkBCjykBC=zjxj×BDzy×y/jBD
115 disjsn xy=¬yx
116 5 115 sylibr φxy=
117 eqidd φxy=xy
118 2 6 ssfid φxyFin
119 6 sselda φjxyjA
120 4 anassrs φjAkBC
121 3 120 fprodcl φjAkBC
122 119 121 syldan φjxykBC
123 116 117 118 122 fprodsplit φjxykBC=jxkBCjykBC
124 123 adantr φψjxykBC=jxkBCjykBC
125 eliun zjxj×Bjxzj×B
126 xp1st zj×B1stzj
127 elsni 1stzj1stz=j
128 126 127 syl zj×B1stz=j
129 128 eleq1d zj×B1stzxjx
130 129 biimparc jxzj×B1stzx
131 130 rexlimiva jxzj×B1stzx
132 125 131 sylbi zjxj×B1stzx
133 xp1st zy×y/jB1stzy
134 132 133 anim12i zjxj×Bzy×y/jB1stzx1stzy
135 elin zjxj×By×y/jBzjxj×Bzy×y/jB
136 elin 1stzxy1stzx1stzy
137 134 135 136 3imtr4i zjxj×By×y/jB1stzxy
138 116 eleq2d φ1stzxy1stz
139 noel ¬1stz
140 139 pm2.21i 1stzz
141 138 140 syl6bi φ1stzxyz
142 137 141 syl5 φzjxj×By×y/jBz
143 142 ssrdv φjxj×By×y/jB
144 ss0 jxj×By×y/jBjxj×By×y/jB=
145 143 144 syl φjxj×By×y/jB=
146 iunxun jxyj×B=jxj×Bjyj×B
147 nfcv _mj×B
148 nfcv _jm
149 148 11 nfxp _jm×m/jB
150 sneq j=mj=m
151 150 14 xpeq12d j=mj×B=m×m/jB
152 147 149 151 cbviun jyj×B=mym×m/jB
153 sneq m=ym=y
154 153 41 xpeq12d m=ym×m/jB=y×y/jB
155 20 154 iunxsn mym×m/jB=y×y/jB
156 152 155 eqtri jyj×B=y×y/jB
157 156 uneq2i jxj×Bjyj×B=jxj×By×y/jB
158 146 157 eqtri jxyj×B=jxj×By×y/jB
159 158 a1i φjxyj×B=jxj×By×y/jB
160 snfi jFin
161 119 3 syldan φjxyBFin
162 xpfi jFinBFinj×BFin
163 160 161 162 sylancr φjxyj×BFin
164 163 ralrimiva φjxyj×BFin
165 iunfi xyFinjxyj×BFinjxyj×BFin
166 118 164 165 syl2anc φjxyj×BFin
167 eliun zjxyj×Bjxyzj×B
168 elxp zj×Bmkz=mkmjkB
169 simprl φjxyz=mkmjkBz=mk
170 simprrl φjxyz=mkmjkBmj
171 elsni mjm=j
172 170 171 syl φjxyz=mkmjkBm=j
173 172 opeq1d φjxyz=mkmjkBmk=jk
174 169 173 eqtrd φjxyz=mkmjkBz=jk
175 174 1 syl φjxyz=mkmjkBD=C
176 simpll φjxyz=mkmjkBφ
177 119 adantr φjxyz=mkmjkBjA
178 simprrr φjxyz=mkmjkBkB
179 176 177 178 4 syl12anc φjxyz=mkmjkBC
180 175 179 eqeltrd φjxyz=mkmjkBD
181 180 ex φjxyz=mkmjkBD
182 181 exlimdvv φjxymkz=mkmjkBD
183 168 182 biimtrid φjxyzj×BD
184 183 rexlimdva φjxyzj×BD
185 167 184 biimtrid φzjxyj×BD
186 185 imp φzjxyj×BD
187 145 159 166 186 fprodsplit φzjxyj×BD=zjxj×BDzy×y/jBD
188 187 adantr φψzjxyj×BD=zjxj×BDzy×y/jBD
189 114 124 188 3eqtr4d φψjxykBC=zjxyj×BD