Metamath Proof Explorer


Theorem frxp

Description: A lexicographical ordering of two well-founded classes. (Contributed by Scott Fenton, 17-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013) (Proof shortened by Wolf Lammen, 4-Oct-2014)

Ref Expression
Hypothesis frxp.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
Assertion frxp RFrASFrBTFrA×B

Proof

Step Hyp Ref Expression
1 frxp.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
2 ssn0 sA×BsA×B
3 xpnz ABA×B
4 3 biimpri A×BAB
5 4 simprd A×BB
6 2 5 syl sA×BsB
7 dmxp BdomA×B=A
8 dmss sA×BdomsdomA×B
9 sseq2 domA×B=AdomsdomA×BdomsA
10 8 9 imbitrid domA×B=AsA×BdomsA
11 7 10 syl BsA×BdomsA
12 11 impcom sA×BBdomsA
13 6 12 syldan sA×BsdomsA
14 relxp RelA×B
15 relss sA×BRelA×BRels
16 14 15 mpi sA×BRels
17 reldm0 Relss=doms=
18 16 17 syl sA×Bs=doms=
19 18 necon3bid sA×Bsdoms
20 19 biimpa sA×Bsdoms
21 13 20 jca sA×BsdomsAdoms
22 df-fr RFrAvvAvavcv¬cRa
23 vex sV
24 23 dmex domsV
25 sseq1 v=domsvAdomsA
26 neeq1 v=domsvdoms
27 25 26 anbi12d v=domsvAvdomsAdoms
28 raleq v=domscv¬cRacdoms¬cRa
29 28 rexeqbi1dv v=domsavcv¬cRaadomscdoms¬cRa
30 27 29 imbi12d v=domsvAvavcv¬cRadomsAdomsadomscdoms¬cRa
31 24 30 spcv vvAvavcv¬cRadomsAdomsadomscdoms¬cRa
32 22 31 sylbi RFrAdomsAdomsadomscdoms¬cRa
33 21 32 syl5 RFrAsA×Bsadomscdoms¬cRa
34 33 adantr RFrASFrBsA×Bsadomscdoms¬cRa
35 imassrn sarans
36 xpeq0 A×B=A=B=
37 36 biimpri A=B=A×B=
38 37 orcs A=A×B=
39 sseq2 A×B=sA×Bs
40 ss0 ss=
41 39 40 syl6bi A×B=sA×Bs=
42 38 41 syl A=sA×Bs=
43 rneq s=rans=ran
44 rn0 ran=
45 0ss B
46 44 45 eqsstri ranB
47 43 46 eqsstrdi s=ransB
48 42 47 syl6 A=sA×BransB
49 rnxp AranA×B=B
50 rnss sA×BransranA×B
51 sseq2 ranA×B=BransranA×BransB
52 50 51 imbitrid ranA×B=BsA×BransB
53 49 52 syl AsA×BransB
54 48 53 pm2.61ine sA×BransB
55 35 54 sstrid sA×BsaB
56 vex aV
57 56 eldm adomsbasb
58 vex bV
59 56 58 elimasn bsaabs
60 df-br asbabs
61 59 60 bitr4i bsaasb
62 ne0i bsasa
63 61 62 sylbir asbsa
64 63 exlimiv basbsa
65 57 64 sylbi adomssa
66 df-fr SFrBvvBvbvdv¬dSb
67 23 imaex saV
68 sseq1 v=savBsaB
69 neeq1 v=savsa
70 68 69 anbi12d v=savBvsaBsa
71 raleq v=sadv¬dSbdsa¬dSb
72 71 rexeqbi1dv v=sabvdv¬dSbbsadsa¬dSb
73 70 72 imbi12d v=savBvbvdv¬dSbsaBsabsadsa¬dSb
74 67 73 spcv vvBvbvdv¬dSbsaBsabsadsa¬dSb
75 66 74 sylbi SFrBsaBsabsadsa¬dSb
76 55 65 75 syl2ani SFrBsA×Badomsbsadsa¬dSb
77 1stdm Relsws1stwdoms
78 breq1 c=1stwcRa1stwRa
79 78 notbid c=1stw¬cRa¬1stwRa
80 79 rspccv cdoms¬cRa1stwdoms¬1stwRa
81 77 80 syl5 cdoms¬cRaRelsws¬1stwRa
82 81 expd cdoms¬cRaRelsws¬1stwRa
83 82 impcom Relscdoms¬cRaws¬1stwRa
84 83 adantr Relscdoms¬cRadsa¬dSbws¬1stwRa
85 elrel Relswstuw=tu
86 85 ex Relswstuw=tu
87 86 adantr Relsdsa¬dSbwstuw=tu
88 vex uV
89 56 88 elimasn usaaus
90 breq1 d=udSbuSb
91 90 notbid d=u¬dSb¬uSb
92 91 rspccv dsa¬dSbusa¬uSb
93 89 92 biimtrrid dsa¬dSbaus¬uSb
94 93 adantl Relsdsa¬dSbaus¬uSb
95 opeq1 t=atu=au
96 95 eleq1d t=atusaus
97 96 imbi1d t=atus¬uSbaus¬uSb
98 94 97 imbitrrid t=aRelsdsa¬dSbtus¬uSb
99 98 com3l Relsdsa¬dSbtust=a¬uSb
100 eleq1 w=tuwstus
101 vex tV
102 101 88 op1std w=tu1stw=t
103 102 eqeq1d w=tu1stw=at=a
104 101 88 op2ndd w=tu2ndw=u
105 104 breq1d w=tu2ndwSbuSb
106 105 notbid w=tu¬2ndwSb¬uSb
107 103 106 imbi12d w=tu1stw=a¬2ndwSbt=a¬uSb
108 100 107 imbi12d w=tuws1stw=a¬2ndwSbtust=a¬uSb
109 99 108 imbitrrid w=tuRelsdsa¬dSbws1stw=a¬2ndwSb
110 109 exlimivv tuw=tuRelsdsa¬dSbws1stw=a¬2ndwSb
111 110 com3l Relsdsa¬dSbwstuw=tu1stw=a¬2ndwSb
112 87 111 mpdd Relsdsa¬dSbws1stw=a¬2ndwSb
113 112 adantlr Relscdoms¬cRadsa¬dSbws1stw=a¬2ndwSb
114 84 113 jcad Relscdoms¬cRadsa¬dSbws¬1stwRa1stw=a¬2ndwSb
115 114 ralrimiv Relscdoms¬cRadsa¬dSbws¬1stwRa1stw=a¬2ndwSb
116 115 ex Relscdoms¬cRadsa¬dSbws¬1stwRa1stw=a¬2ndwSb
117 16 116 sylan sA×Bcdoms¬cRadsa¬dSbws¬1stwRa1stw=a¬2ndwSb
118 olc ¬1stwRa1stw=a¬2ndwSb¬wA×BabA×B¬1stwRa1stw=a¬2ndwSb
119 118 ralimi ws¬1stwRa1stw=a¬2ndwSbws¬wA×BabA×B¬1stwRa1stw=a¬2ndwSb
120 117 119 syl6 sA×Bcdoms¬cRadsa¬dSbws¬wA×BabA×B¬1stwRa1stw=a¬2ndwSb
121 ianor ¬wA×BabA×B1stwRa1stw=a2ndwSb¬wA×BabA×B¬1stwRa1stw=a2ndwSb
122 vex wV
123 opex abV
124 eleq1 x=wxA×BwA×B
125 124 anbi1d x=wxA×ByA×BwA×ByA×B
126 fveq2 x=w1stx=1stw
127 126 breq1d x=w1stxR1sty1stwR1sty
128 126 eqeq1d x=w1stx=1sty1stw=1sty
129 fveq2 x=w2ndx=2ndw
130 129 breq1d x=w2ndxS2ndy2ndwS2ndy
131 128 130 anbi12d x=w1stx=1sty2ndxS2ndy1stw=1sty2ndwS2ndy
132 127 131 orbi12d x=w1stxR1sty1stx=1sty2ndxS2ndy1stwR1sty1stw=1sty2ndwS2ndy
133 125 132 anbi12d x=wxA×ByA×B1stxR1sty1stx=1sty2ndxS2ndywA×ByA×B1stwR1sty1stw=1sty2ndwS2ndy
134 eleq1 y=abyA×BabA×B
135 134 anbi2d y=abwA×ByA×BwA×BabA×B
136 56 58 op1std y=ab1sty=a
137 136 breq2d y=ab1stwR1sty1stwRa
138 136 eqeq2d y=ab1stw=1sty1stw=a
139 56 58 op2ndd y=ab2ndy=b
140 139 breq2d y=ab2ndwS2ndy2ndwSb
141 138 140 anbi12d y=ab1stw=1sty2ndwS2ndy1stw=a2ndwSb
142 137 141 orbi12d y=ab1stwR1sty1stw=1sty2ndwS2ndy1stwRa1stw=a2ndwSb
143 135 142 anbi12d y=abwA×ByA×B1stwR1sty1stw=1sty2ndwS2ndywA×BabA×B1stwRa1stw=a2ndwSb
144 122 123 133 143 1 brab wTabwA×BabA×B1stwRa1stw=a2ndwSb
145 121 144 xchnxbir ¬wTab¬wA×BabA×B¬1stwRa1stw=a2ndwSb
146 ioran ¬1stwRa1stw=a2ndwSb¬1stwRa¬1stw=a2ndwSb
147 ianor ¬1stw=a2ndwSb¬1stw=a¬2ndwSb
148 pm4.62 1stw=a¬2ndwSb¬1stw=a¬2ndwSb
149 147 148 bitr4i ¬1stw=a2ndwSb1stw=a¬2ndwSb
150 149 anbi2i ¬1stwRa¬1stw=a2ndwSb¬1stwRa1stw=a¬2ndwSb
151 146 150 bitri ¬1stwRa1stw=a2ndwSb¬1stwRa1stw=a¬2ndwSb
152 151 orbi2i ¬wA×BabA×B¬1stwRa1stw=a2ndwSb¬wA×BabA×B¬1stwRa1stw=a¬2ndwSb
153 145 152 bitri ¬wTab¬wA×BabA×B¬1stwRa1stw=a¬2ndwSb
154 153 ralbii ws¬wTabws¬wA×BabA×B¬1stwRa1stw=a¬2ndwSb
155 120 154 syl6ibr sA×Bcdoms¬cRadsa¬dSbws¬wTab
156 155 reximdv sA×Bcdoms¬cRabsadsa¬dSbbsaws¬wTab
157 156 ex sA×Bcdoms¬cRabsadsa¬dSbbsaws¬wTab
158 157 com23 sA×Bbsadsa¬dSbcdoms¬cRabsaws¬wTab
159 158 adantr sA×Badomsbsadsa¬dSbcdoms¬cRabsaws¬wTab
160 76 159 sylcom SFrBsA×Badomscdoms¬cRabsaws¬wTab
161 160 impl SFrBsA×Badomscdoms¬cRabsaws¬wTab
162 161 expimpd SFrBsA×Badomscdoms¬cRabsaws¬wTab
163 162 3adant3 SFrBsA×Bsadomscdoms¬cRabsaws¬wTab
164 resss sas
165 df-rex bsaws¬wTabbbsaws¬wTab
166 eqid ab=ab
167 eqeq1 z=abz=abab=ab
168 breq2 z=abwTzwTab
169 168 notbid z=ab¬wTz¬wTab
170 169 ralbidv z=abws¬wTzws¬wTab
171 170 anbi2d z=ababsws¬wTzabsws¬wTab
172 167 171 anbi12d z=abz=ababsws¬wTzab=ababsws¬wTab
173 123 172 spcev ab=ababsws¬wTabzz=ababsws¬wTz
174 166 173 mpan absws¬wTabzz=ababsws¬wTz
175 59 174 sylanb bsaws¬wTabzz=ababsws¬wTz
176 175 eximi bbsaws¬wTabbzz=ababsws¬wTz
177 165 176 sylbi bsaws¬wTabbzz=ababsws¬wTz
178 excom bzz=ababsws¬wTzzbz=ababsws¬wTz
179 177 178 sylib bsaws¬wTabzbz=ababsws¬wTz
180 df-rex zsaws¬wTzzzsaws¬wTz
181 56 elsnres zsabz=ababs
182 181 anbi1i zsaws¬wTzbz=ababsws¬wTz
183 19.41v bz=ababsws¬wTzbz=ababsws¬wTz
184 anass z=ababsws¬wTzz=ababsws¬wTz
185 184 exbii bz=ababsws¬wTzbz=ababsws¬wTz
186 182 183 185 3bitr2i zsaws¬wTzbz=ababsws¬wTz
187 186 exbii zzsaws¬wTzzbz=ababsws¬wTz
188 180 187 bitri zsaws¬wTzzbz=ababsws¬wTz
189 179 188 sylibr bsaws¬wTabzsaws¬wTz
190 ssrexv saszsaws¬wTzzsws¬wTz
191 164 189 190 mpsyl bsaws¬wTabzsws¬wTz
192 163 191 syl6 SFrBsA×Bsadomscdoms¬cRazsws¬wTz
193 192 expd SFrBsA×Bsadomscdoms¬cRazsws¬wTz
194 193 rexlimdv SFrBsA×Bsadomscdoms¬cRazsws¬wTz
195 194 3expib SFrBsA×Bsadomscdoms¬cRazsws¬wTz
196 195 adantl RFrASFrBsA×Bsadomscdoms¬cRazsws¬wTz
197 34 196 mpdd RFrASFrBsA×Bszsws¬wTz
198 197 alrimiv RFrASFrBssA×Bszsws¬wTz
199 df-fr TFrA×BssA×Bszsws¬wTz
200 198 199 sylibr RFrASFrBTFrA×B