Step |
Hyp |
Ref |
Expression |
1 |
|
fsumvma.1 |
|
2 |
|
fsumvma.2 |
|
3 |
|
fsumvma.3 |
|
4 |
|
fsumvma.4 |
|
5 |
|
fsumvma.5 |
|
6 |
|
fsumvma.6 |
|
7 |
|
fsumvma.7 |
|
8 |
|
fvexd |
|
9 |
|
fveq2 |
|
10 |
|
df-ov |
|
11 |
9 10
|
eqtr4di |
|
12 |
11
|
eqeq2d |
|
13 |
12
|
biimpa |
|
14 |
13 1
|
syl |
|
15 |
8 14
|
csbied |
|
16 |
2
|
adantr |
|
17 |
5
|
biimpd |
|
18 |
17
|
impl |
|
19 |
18
|
simprd |
|
20 |
19
|
ex |
|
21 |
18
|
simpld |
|
22 |
21
|
simpld |
|
23 |
22
|
adantrr |
|
24 |
21
|
simprd |
|
25 |
24
|
adantrr |
|
26 |
24
|
ex |
|
27 |
26
|
ssrdv |
|
28 |
27
|
sselda |
|
29 |
28
|
adantrl |
|
30 |
|
eqid |
|
31 |
|
prmexpb |
|
32 |
31
|
baibd |
|
33 |
30 32
|
mpan2 |
|
34 |
23 23 25 29 33
|
syl22anc |
|
35 |
34
|
ex |
|
36 |
20 35
|
dom2lem |
|
37 |
|
f1fi |
|
38 |
16 36 37
|
syl2anc |
|
39 |
1
|
eleq1d |
|
40 |
6
|
ralrimiva |
|
41 |
40
|
adantr |
|
42 |
5
|
simplbda |
|
43 |
39 41 42
|
rspcdva |
|
44 |
15 4 38 43
|
fsum2d |
|
45 |
|
nfcv |
|
46 |
|
nfcsb1v |
|
47 |
|
csbeq1a |
|
48 |
45 46 47
|
cbvsumi |
|
49 |
|
csbeq1 |
|
50 |
|
snfi |
|
51 |
|
xpfi |
|
52 |
50 38 51
|
sylancr |
|
53 |
52
|
ralrimiva |
|
54 |
|
iunfi |
|
55 |
4 53 54
|
syl2anc |
|
56 |
|
fvex |
|
57 |
56
|
2a1i |
|
58 |
|
eliunxp |
|
59 |
5
|
simprbda |
|
60 |
|
opelxp |
|
61 |
59 60
|
sylibr |
|
62 |
|
eleq1 |
|
63 |
61 62
|
syl5ibrcom |
|
64 |
63
|
impancom |
|
65 |
64
|
expimpd |
|
66 |
65
|
exlimdvv |
|
67 |
58 66
|
syl5bi |
|
68 |
67
|
ssrdv |
|
69 |
68
|
sseld |
|
70 |
67 69
|
anim12d |
|
71 |
|
1st2nd2 |
|
72 |
71
|
fveq2d |
|
73 |
|
df-ov |
|
74 |
72 73
|
eqtr4di |
|
75 |
|
1st2nd2 |
|
76 |
75
|
fveq2d |
|
77 |
|
df-ov |
|
78 |
76 77
|
eqtr4di |
|
79 |
74 78
|
eqeqan12d |
|
80 |
|
xp1st |
|
81 |
|
xp2nd |
|
82 |
80 81
|
jca |
|
83 |
|
xp1st |
|
84 |
|
xp2nd |
|
85 |
83 84
|
jca |
|
86 |
|
prmexpb |
|
87 |
86
|
an4s |
|
88 |
82 85 87
|
syl2an |
|
89 |
|
xpopth |
|
90 |
79 88 89
|
3bitrd |
|
91 |
70 90
|
syl6 |
|
92 |
57 91
|
dom2lem |
|
93 |
|
f1f1orn |
|
94 |
92 93
|
syl |
|
95 |
|
fveq2 |
|
96 |
|
eqid |
|
97 |
|
fvex |
|
98 |
95 96 97
|
fvmpt |
|
99 |
98
|
adantl |
|
100 |
|
fveq2 |
|
101 |
100 10
|
eqtr4di |
|
102 |
101
|
eleq1d |
|
103 |
42 102
|
syl5ibrcom |
|
104 |
103
|
impancom |
|
105 |
104
|
expimpd |
|
106 |
105
|
exlimdvv |
|
107 |
58 106
|
syl5bi |
|
108 |
107
|
imp |
|
109 |
108
|
fmpttd |
|
110 |
109
|
frnd |
|
111 |
110
|
sselda |
|
112 |
46
|
nfel1 |
|
113 |
47
|
eleq1d |
|
114 |
112 113
|
rspc |
|
115 |
40 114
|
mpan9 |
|
116 |
111 115
|
syldan |
|
117 |
49 55 94 99 116
|
fsumf1o |
|
118 |
48 117
|
eqtrid |
|
119 |
110
|
sselda |
|
120 |
119 6
|
syldan |
|
121 |
|
eldif |
|
122 |
96 56
|
elrnmpti |
|
123 |
101
|
eqeq2d |
|
124 |
123
|
rexiunxp |
|
125 |
122 124
|
bitri |
|
126 |
|
simpr |
|
127 |
|
simplr |
|
128 |
126 127
|
eqeltrrd |
|
129 |
5
|
rbaibd |
|
130 |
129
|
adantlr |
|
131 |
128 130
|
syldan |
|
132 |
131
|
pm5.32da |
|
133 |
|
ancom |
|
134 |
|
ancom |
|
135 |
132 133 134
|
3bitr4g |
|
136 |
135
|
2exbidv |
|
137 |
|
r2ex |
|
138 |
|
r2ex |
|
139 |
136 137 138
|
3bitr4g |
|
140 |
3
|
sselda |
|
141 |
|
isppw2 |
|
142 |
140 141
|
syl |
|
143 |
139 142
|
bitr4d |
|
144 |
125 143
|
syl5bb |
|
145 |
144
|
necon2bbid |
|
146 |
145
|
pm5.32da |
|
147 |
7
|
ex |
|
148 |
146 147
|
sylbird |
|
149 |
121 148
|
syl5bi |
|
150 |
149
|
imp |
|
151 |
110 120 150 2
|
fsumss |
|
152 |
44 118 151
|
3eqtr2rd |
|