Metamath Proof Explorer


Theorem fsumvma

Description: Rewrite a sum over the von Mangoldt function as a sum over prime powers. (Contributed by Mario Carneiro, 15-Apr-2016)

Ref Expression
Hypotheses fsumvma.1 x=pkB=C
fsumvma.2 φAFin
fsumvma.3 φA
fsumvma.4 φPFin
fsumvma.5 φpPkKpkpkA
fsumvma.6 φxAB
fsumvma.7 φxAΛx=0B=0
Assertion fsumvma φxAB=pPkKC

Proof

Step Hyp Ref Expression
1 fsumvma.1 x=pkB=C
2 fsumvma.2 φAFin
3 fsumvma.3 φA
4 fsumvma.4 φPFin
5 fsumvma.5 φpPkKpkpkA
6 fsumvma.6 φxAB
7 fsumvma.7 φxAΛx=0B=0
8 fvexd z=pk^zV
9 fveq2 z=pk^z=^pk
10 df-ov pk=^pk
11 9 10 eqtr4di z=pk^z=pk
12 11 eqeq2d z=pkx=^zx=pk
13 12 biimpa z=pkx=^zx=pk
14 13 1 syl z=pkx=^zB=C
15 8 14 csbied z=pk^z/xB=C
16 2 adantr φpPAFin
17 5 biimpd φpPkKpkpkA
18 17 impl φpPkKpkpkA
19 18 simprd φpPkKpkA
20 19 ex φpPkKpkA
21 18 simpld φpPkKpk
22 21 simpld φpPkKp
23 22 adantrr φpPkKzKp
24 21 simprd φpPkKk
25 24 adantrr φpPkKzKk
26 24 ex φpPkKk
27 26 ssrdv φpPK
28 27 sselda φpPzKz
29 28 adantrl φpPkKzKz
30 eqid p=p
31 prmexpb ppkzpk=pzp=pk=z
32 31 baibd ppkzp=ppk=pzk=z
33 30 32 mpan2 ppkzpk=pzk=z
34 23 23 25 29 33 syl22anc φpPkKzKpk=pzk=z
35 34 ex φpPkKzKpk=pzk=z
36 20 35 dom2lem φpPkKpk:K1-1A
37 f1fi AFinkKpk:K1-1AKFin
38 16 36 37 syl2anc φpPKFin
39 1 eleq1d x=pkBC
40 6 ralrimiva φxAB
41 40 adantr φpPkKxAB
42 5 simplbda φpPkKpkA
43 39 41 42 rspcdva φpPkKC
44 15 4 38 43 fsum2d φpPkKC=zpPp×K^z/xB
45 nfcv _yB
46 nfcsb1v _xy/xB
47 csbeq1a x=yB=y/xB
48 45 46 47 cbvsumi xranapPp×K^aB=yranapPp×K^ay/xB
49 csbeq1 y=^zy/xB=^z/xB
50 snfi pFin
51 xpfi pFinKFinp×KFin
52 50 38 51 sylancr φpPp×KFin
53 52 ralrimiva φpPp×KFin
54 iunfi PFinpPp×KFinpPp×KFin
55 4 53 54 syl2anc φpPp×KFin
56 fvex ^aV
57 56 2a1i φapPp×K^aV
58 eliunxp apPp×Kpka=pkpPkK
59 5 simprbda φpPkKpk
60 opelxp pk×pk
61 59 60 sylibr φpPkKpk×
62 eleq1 a=pka×pk×
63 61 62 syl5ibrcom φpPkKa=pka×
64 63 impancom φa=pkpPkKa×
65 64 expimpd φa=pkpPkKa×
66 65 exlimdvv φpka=pkpPkKa×
67 58 66 biimtrid φapPp×Ka×
68 67 ssrdv φpPp×K×
69 68 sseld φbpPp×Kb×
70 67 69 anim12d φapPp×KbpPp×Ka×b×
71 1st2nd2 a×a=1sta2nda
72 71 fveq2d a×^a=^1sta2nda
73 df-ov 1sta2nda=^1sta2nda
74 72 73 eqtr4di a×^a=1sta2nda
75 1st2nd2 b×b=1stb2ndb
76 75 fveq2d b×^b=^1stb2ndb
77 df-ov 1stb2ndb=^1stb2ndb
78 76 77 eqtr4di b×^b=1stb2ndb
79 74 78 eqeqan12d a×b×^a=^b1sta2nda=1stb2ndb
80 xp1st a×1sta
81 xp2nd a×2nda
82 80 81 jca a×1sta2nda
83 xp1st b×1stb
84 xp2nd b×2ndb
85 83 84 jca b×1stb2ndb
86 prmexpb 1sta1stb2nda2ndb1sta2nda=1stb2ndb1sta=1stb2nda=2ndb
87 86 an4s 1sta2nda1stb2ndb1sta2nda=1stb2ndb1sta=1stb2nda=2ndb
88 82 85 87 syl2an a×b×1sta2nda=1stb2ndb1sta=1stb2nda=2ndb
89 xpopth a×b×1sta=1stb2nda=2ndba=b
90 79 88 89 3bitrd a×b×^a=^ba=b
91 70 90 syl6 φapPp×KbpPp×K^a=^ba=b
92 57 91 dom2lem φapPp×K^a:pPp×K1-1V
93 f1f1orn apPp×K^a:pPp×K1-1VapPp×K^a:pPp×K1-1 ontoranapPp×K^a
94 92 93 syl φapPp×K^a:pPp×K1-1 ontoranapPp×K^a
95 fveq2 a=z^a=^z
96 eqid apPp×K^a=apPp×K^a
97 fvex ^zV
98 95 96 97 fvmpt zpPp×KapPp×K^az=^z
99 98 adantl φzpPp×KapPp×K^az=^z
100 fveq2 a=pk^a=^pk
101 100 10 eqtr4di a=pk^a=pk
102 101 eleq1d a=pk^aApkA
103 42 102 syl5ibrcom φpPkKa=pk^aA
104 103 impancom φa=pkpPkK^aA
105 104 expimpd φa=pkpPkK^aA
106 105 exlimdvv φpka=pkpPkK^aA
107 58 106 biimtrid φapPp×K^aA
108 107 imp φapPp×K^aA
109 108 fmpttd φapPp×K^a:pPp×KA
110 109 frnd φranapPp×K^aA
111 110 sselda φyranapPp×K^ayA
112 46 nfel1 xy/xB
113 47 eleq1d x=yBy/xB
114 112 113 rspc yAxABy/xB
115 40 114 mpan9 φyAy/xB
116 111 115 syldan φyranapPp×K^ay/xB
117 49 55 94 99 116 fsumf1o φyranapPp×K^ay/xB=zpPp×K^z/xB
118 48 117 eqtrid φxranapPp×K^aB=zpPp×K^z/xB
119 110 sselda φxranapPp×K^axA
120 119 6 syldan φxranapPp×K^aB
121 eldif xAranapPp×K^axA¬xranapPp×K^a
122 96 56 elrnmpti xranapPp×K^aapPp×Kx=^a
123 101 eqeq2d a=pkx=^ax=pk
124 123 rexiunxp apPp×Kx=^apPkKx=pk
125 122 124 bitri xranapPp×K^apPkKx=pk
126 simpr φxAx=pkx=pk
127 simplr φxAx=pkxA
128 126 127 eqeltrrd φxAx=pkpkA
129 5 rbaibd φpkApPkKpk
130 129 adantlr φxApkApPkKpk
131 128 130 syldan φxAx=pkpPkKpk
132 131 pm5.32da φxAx=pkpPkKx=pkpk
133 ancom pPkKx=pkx=pkpPkK
134 ancom pkx=pkx=pkpk
135 132 133 134 3bitr4g φxApPkKx=pkpkx=pk
136 135 2exbidv φxApkpPkKx=pkpkpkx=pk
137 r2ex pPkKx=pkpkpPkKx=pk
138 r2ex pkx=pkpkpkx=pk
139 136 137 138 3bitr4g φxApPkKx=pkpkx=pk
140 3 sselda φxAx
141 isppw2 xΛx0pkx=pk
142 140 141 syl φxAΛx0pkx=pk
143 139 142 bitr4d φxApPkKx=pkΛx0
144 125 143 bitrid φxAxranapPp×K^aΛx0
145 144 necon2bbid φxAΛx=0¬xranapPp×K^a
146 145 pm5.32da φxAΛx=0xA¬xranapPp×K^a
147 7 ex φxAΛx=0B=0
148 146 147 sylbird φxA¬xranapPp×K^aB=0
149 121 148 biimtrid φxAranapPp×K^aB=0
150 149 imp φxAranapPp×K^aB=0
151 110 120 150 2 fsumss φxranapPp×K^aB=xAB
152 44 118 151 3eqtr2rd φxAB=pPkKC