Metamath Proof Explorer


Theorem itg2addlem

Description: Lemma for itg2add . (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itg2add.f1 φFMblFn
itg2add.f2 φF:0+∞
itg2add.f3 φ2F
itg2add.g1 φGMblFn
itg2add.g2 φG:0+∞
itg2add.g3 φ2G
itg2add.p1 φP:dom1
itg2add.p2 φn0𝑝fPnPnfPn+1
itg2add.p3 φxnPnxFx
itg2add.q1 φQ:dom1
itg2add.q2 φn0𝑝fQnQnfQn+1
itg2add.q3 φxnQnxGx
Assertion itg2addlem φ2F+fG=2F+2G

Proof

Step Hyp Ref Expression
1 itg2add.f1 φFMblFn
2 itg2add.f2 φF:0+∞
3 itg2add.f3 φ2F
4 itg2add.g1 φGMblFn
5 itg2add.g2 φG:0+∞
6 itg2add.g3 φ2G
7 itg2add.p1 φP:dom1
8 itg2add.p2 φn0𝑝fPnPnfPn+1
9 itg2add.p3 φxnPnxFx
10 itg2add.q1 φQ:dom1
11 itg2add.q2 φn0𝑝fQnQnfQn+1
12 itg2add.q3 φxnQnxGx
13 1 4 mbfadd φF+fGMblFn
14 ge0addcl y0+∞z0+∞y+z0+∞
15 14 adantl φy0+∞z0+∞y+z0+∞
16 reex V
17 16 a1i φV
18 inidm =
19 15 2 5 17 17 18 off φF+fG:0+∞
20 simpl fdom1gdom1fdom1
21 simpr fdom1gdom1gdom1
22 20 21 i1fadd fdom1gdom1f+fgdom1
23 22 adantl φfdom1gdom1f+fgdom1
24 nnex V
25 24 a1i φV
26 inidm =
27 23 7 10 25 25 26 off φPf+fQ:dom1
28 ge0addcl f0+∞g0+∞f+g0+∞
29 28 adantl φmf0+∞g0+∞f+g0+∞
30 7 ffvelcdmda φmPmdom1
31 fveq2 n=mPn=Pm
32 31 breq2d n=m0𝑝fPn0𝑝fPm
33 fvoveq1 n=mPn+1=Pm+1
34 31 33 breq12d n=mPnfPn+1PmfPm+1
35 32 34 anbi12d n=m0𝑝fPnPnfPn+10𝑝fPmPmfPm+1
36 35 rspccva n0𝑝fPnPnfPn+1m0𝑝fPmPmfPm+1
37 8 36 sylan φm0𝑝fPmPmfPm+1
38 37 simpld φm0𝑝fPm
39 breq2 f=Pm0𝑝ff0𝑝fPm
40 feq1 f=Pmf:0+∞Pm:0+∞
41 39 40 imbi12d f=Pm0𝑝fff:0+∞0𝑝fPmPm:0+∞
42 i1ff fdom1f:
43 42 ffnd fdom1fFn
44 43 adantr fdom10𝑝fffFn
45 0cn 0
46 fnconstg 0×0Fn
47 45 46 ax-mp ×0Fn
48 df-0p 0𝑝=×0
49 48 fneq1i 0𝑝Fn×0Fn
50 47 49 mpbir 0𝑝Fn
51 50 a1i fdom10𝑝Fn
52 cnex V
53 52 a1i fdom1V
54 16 a1i fdom1V
55 ax-resscn
56 sseqin2 =
57 55 56 mpbi =
58 0pval x0𝑝x=0
59 58 adantl fdom1x0𝑝x=0
60 eqidd fdom1xfx=fx
61 51 43 53 54 57 59 60 ofrfval fdom10𝑝ffx0fx
62 61 biimpa fdom10𝑝ffx0fx
63 42 ffvelcdmda fdom1xfx
64 elrege0 fx0+∞fx0fx
65 64 simplbi2 fx0fxfx0+∞
66 63 65 syl fdom1x0fxfx0+∞
67 66 ralimdva fdom1x0fxxfx0+∞
68 67 imp fdom1x0fxxfx0+∞
69 62 68 syldan fdom10𝑝ffxfx0+∞
70 ffnfv f:0+∞fFnxfx0+∞
71 44 69 70 sylanbrc fdom10𝑝fff:0+∞
72 71 ex fdom10𝑝fff:0+∞
73 41 72 vtoclga Pmdom10𝑝fPmPm:0+∞
74 30 38 73 sylc φmPm:0+∞
75 10 ffvelcdmda φmQmdom1
76 fveq2 n=mQn=Qm
77 76 breq2d n=m0𝑝fQn0𝑝fQm
78 fvoveq1 n=mQn+1=Qm+1
79 76 78 breq12d n=mQnfQn+1QmfQm+1
80 77 79 anbi12d n=m0𝑝fQnQnfQn+10𝑝fQmQmfQm+1
81 80 rspccva n0𝑝fQnQnfQn+1m0𝑝fQmQmfQm+1
82 11 81 sylan φm0𝑝fQmQmfQm+1
83 82 simpld φm0𝑝fQm
84 breq2 f=Qm0𝑝ff0𝑝fQm
85 feq1 f=Qmf:0+∞Qm:0+∞
86 84 85 imbi12d f=Qm0𝑝fff:0+∞0𝑝fQmQm:0+∞
87 86 72 vtoclga Qmdom10𝑝fQmQm:0+∞
88 75 83 87 sylc φmQm:0+∞
89 16 a1i φmV
90 29 74 88 89 89 18 off φmPm+fQm:0+∞
91 0plef Pm+fQm:0+∞Pm+fQm:0𝑝fPm+fQm
92 90 91 sylib φmPm+fQm:0𝑝fPm+fQm
93 92 simprd φm0𝑝fPm+fQm
94 7 ffnd φPFn
95 10 ffnd φQFn
96 eqidd φmPm=Pm
97 eqidd φmQm=Qm
98 94 95 25 25 26 96 97 ofval φmPf+fQm=Pm+fQm
99 93 98 breqtrrd φm0𝑝fPf+fQm
100 i1ff Pmdom1Pm:
101 30 100 syl φmPm:
102 101 ffvelcdmda φmyPmy
103 i1ff Qmdom1Qm:
104 75 103 syl φmQm:
105 104 ffvelcdmda φmyQmy
106 peano2nn mm+1
107 ffvelcdm P:dom1m+1Pm+1dom1
108 7 106 107 syl2an φmPm+1dom1
109 i1ff Pm+1dom1Pm+1:
110 108 109 syl φmPm+1:
111 110 ffvelcdmda φmyPm+1y
112 ffvelcdm Q:dom1m+1Qm+1dom1
113 10 106 112 syl2an φmQm+1dom1
114 i1ff Qm+1dom1Qm+1:
115 113 114 syl φmQm+1:
116 115 ffvelcdmda φmyQm+1y
117 37 simprd φmPmfPm+1
118 101 ffnd φmPmFn
119 110 ffnd φmPm+1Fn
120 eqidd φmyPmy=Pmy
121 eqidd φmyPm+1y=Pm+1y
122 118 119 89 89 18 120 121 ofrfval φmPmfPm+1yPmyPm+1y
123 117 122 mpbid φmyPmyPm+1y
124 123 r19.21bi φmyPmyPm+1y
125 82 simprd φmQmfQm+1
126 104 ffnd φmQmFn
127 115 ffnd φmQm+1Fn
128 eqidd φmyQmy=Qmy
129 eqidd φmyQm+1y=Qm+1y
130 126 127 89 89 18 128 129 ofrfval φmQmfQm+1yQmyQm+1y
131 125 130 mpbid φmyQmyQm+1y
132 131 r19.21bi φmyQmyQm+1y
133 102 105 111 116 124 132 le2addd φmyPmy+QmyPm+1y+Qm+1y
134 133 ralrimiva φmyPmy+QmyPm+1y+Qm+1y
135 30 75 i1fadd φmPm+fQmdom1
136 i1ff Pm+fQmdom1Pm+fQm:
137 ffn Pm+fQm:Pm+fQmFn
138 135 136 137 3syl φmPm+fQmFn
139 108 113 i1fadd φmPm+1+fQm+1dom1
140 i1ff Pm+1+fQm+1dom1Pm+1+fQm+1:
141 139 140 syl φmPm+1+fQm+1:
142 141 ffnd φmPm+1+fQm+1Fn
143 118 126 89 89 18 120 128 ofval φmyPm+fQmy=Pmy+Qmy
144 119 127 89 89 18 121 129 ofval φmyPm+1+fQm+1y=Pm+1y+Qm+1y
145 138 142 89 89 18 143 144 ofrfval φmPm+fQmfPm+1+fQm+1yPmy+QmyPm+1y+Qm+1y
146 134 145 mpbird φmPm+fQmfPm+1+fQm+1
147 eqidd φm+1Pm+1=Pm+1
148 eqidd φm+1Qm+1=Qm+1
149 94 95 25 25 26 147 148 ofval φm+1Pf+fQm+1=Pm+1+fQm+1
150 106 149 sylan2 φmPf+fQm+1=Pm+1+fQm+1
151 146 98 150 3brtr4d φmPf+fQmfPf+fQm+1
152 99 151 jca φm0𝑝fPf+fQmPf+fQmfPf+fQm+1
153 152 ralrimiva φm0𝑝fPf+fQmPf+fQmfPf+fQm+1
154 fveq2 n=mPf+fQn=Pf+fQm
155 154 fveq1d n=mPf+fQny=Pf+fQmy
156 155 cbvmptv nPf+fQny=mPf+fQmy
157 nnuz =1
158 1zzd φy1
159 fveq2 x=yPnx=Pny
160 159 mpteq2dv x=ynPnx=nPny
161 fveq2 x=yFx=Fy
162 160 161 breq12d x=ynPnxFxnPnyFy
163 162 rspccva xnPnxFxynPnyFy
164 9 163 sylan φynPnyFy
165 24 mptex nPf+fQnyV
166 165 a1i φynPf+fQnyV
167 fveq2 x=yQnx=Qny
168 167 mpteq2dv x=ynQnx=nQny
169 fveq2 x=yGx=Gy
170 168 169 breq12d x=ynQnxGxnQnyGy
171 170 rspccva xnQnxGxynQnyGy
172 12 171 sylan φynQnyGy
173 31 fveq1d n=mPny=Pmy
174 eqid nPny=nPny
175 fvex PmyV
176 173 174 175 fvmpt mnPnym=Pmy
177 176 adantl φymnPnym=Pmy
178 102 an32s φymPmy
179 177 178 eqeltrd φymnPnym
180 179 recnd φymnPnym
181 76 fveq1d n=mQny=Qmy
182 eqid nQny=nQny
183 fvex QmyV
184 181 182 183 fvmpt mnQnym=Qmy
185 184 adantl φymnQnym=Qmy
186 105 an32s φymQmy
187 185 186 eqeltrd φymnQnym
188 187 recnd φymnQnym
189 98 fveq1d φmPf+fQmy=Pm+fQmy
190 189 adantr φmyPf+fQmy=Pm+fQmy
191 190 143 eqtrd φmyPf+fQmy=Pmy+Qmy
192 191 an32s φymPf+fQmy=Pmy+Qmy
193 eqid nPf+fQny=nPf+fQny
194 fvex Pf+fQmyV
195 155 193 194 fvmpt mnPf+fQnym=Pf+fQmy
196 195 adantl φymnPf+fQnym=Pf+fQmy
197 177 185 oveq12d φymnPnym+nQnym=Pmy+Qmy
198 192 196 197 3eqtr4d φymnPf+fQnym=nPnym+nQnym
199 157 158 164 166 172 180 188 198 climadd φynPf+fQnyFy+Gy
200 156 199 eqbrtrrid φymPf+fQmyFy+Gy
201 2 ffnd φFFn
202 5 ffnd φGFn
203 eqidd φyFy=Fy
204 eqidd φyGy=Gy
205 201 202 17 17 18 203 204 ofval φyF+fGy=Fy+Gy
206 200 205 breqtrrd φymPf+fQmyF+fGy
207 206 ralrimiva φymPf+fQmyF+fGy
208 2fveq3 n=j1Pf+fQn=1Pf+fQj
209 208 cbvmptv n1Pf+fQn=j1Pf+fQj
210 3 6 readdcld φ2F+2G
211 98 fveq2d φm1Pf+fQm=1Pm+fQm
212 30 75 itg1add φm1Pm+fQm=1Pm+1Qm
213 211 212 eqtrd φm1Pf+fQm=1Pm+1Qm
214 itg1cl Pmdom11Pm
215 30 214 syl φm1Pm
216 itg1cl Qmdom11Qm
217 75 216 syl φm1Qm
218 3 adantr φm2F
219 6 adantr φm2G
220 2 adantr φmF:0+∞
221 icossicc 0+∞0+∞
222 fss F:0+∞0+∞0+∞F:0+∞
223 220 221 222 sylancl φmF:0+∞
224 1 2 7 8 9 itg2i1fseqle φmPmfF
225 itg2ub F:0+∞Pmdom1PmfF1Pm2F
226 223 30 224 225 syl3anc φm1Pm2F
227 5 adantr φmG:0+∞
228 fss G:0+∞0+∞0+∞G:0+∞
229 227 221 228 sylancl φmG:0+∞
230 4 5 10 11 12 itg2i1fseqle φmQmfG
231 itg2ub G:0+∞Qmdom1QmfG1Qm2G
232 229 75 230 231 syl3anc φm1Qm2G
233 215 217 218 219 226 232 le2addd φm1Pm+1Qm2F+2G
234 213 233 eqbrtrd φm1Pf+fQm2F+2G
235 234 ralrimiva φm1Pf+fQm2F+2G
236 2fveq3 m=k1Pf+fQm=1Pf+fQk
237 236 breq1d m=k1Pf+fQm2F+2G1Pf+fQk2F+2G
238 237 rspccva m1Pf+fQm2F+2Gk1Pf+fQk2F+2G
239 235 238 sylan φk1Pf+fQk2F+2G
240 13 19 27 153 207 209 210 239 itg2i1fseq2 φn1Pf+fQn2F+fG
241 1zzd φ1
242 eqid k1Pk=k1Pk
243 1 2 7 8 9 242 3 itg2i1fseq3 φk1Pk2F
244 24 mptex n1Pf+fQnV
245 244 a1i φn1Pf+fQnV
246 eqid k1Qk=k1Qk
247 4 5 10 11 12 246 6 itg2i1fseq3 φk1Qk2G
248 2fveq3 k=m1Pk=1Pm
249 fvex 1PmV
250 248 242 249 fvmpt mk1Pkm=1Pm
251 250 adantl φmk1Pkm=1Pm
252 215 recnd φm1Pm
253 251 252 eqeltrd φmk1Pkm
254 2fveq3 k=m1Qk=1Qm
255 fvex 1QmV
256 254 246 255 fvmpt mk1Qkm=1Qm
257 256 adantl φmk1Qkm=1Qm
258 217 recnd φm1Qm
259 257 258 eqeltrd φmk1Qkm
260 2fveq3 j=m1Pf+fQj=1Pf+fQm
261 fvex 1Pf+fQmV
262 260 209 261 fvmpt mn1Pf+fQnm=1Pf+fQm
263 262 adantl φmn1Pf+fQnm=1Pf+fQm
264 251 257 oveq12d φmk1Pkm+k1Qkm=1Pm+1Qm
265 213 263 264 3eqtr4d φmn1Pf+fQnm=k1Pkm+k1Qkm
266 157 241 243 245 247 253 259 265 climadd φn1Pf+fQn2F+2G
267 climuni n1Pf+fQn2F+fGn1Pf+fQn2F+2G2F+fG=2F+2G
268 240 266 267 syl2anc φ2F+fG=2F+2G