Metamath Proof Explorer


Theorem lt6abl

Description: A group with fewer than 6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypothesis cygctb.1 B=BaseG
Assertion lt6abl GGrpB<6GAbel

Proof

Step Hyp Ref Expression
1 cygctb.1 B=BaseG
2 1 grpbn0 GGrpB
3 2 adantr GGrpB<6B
4 6re 6
5 rexr 66*
6 pnfnlt 6*¬+∞<6
7 4 5 6 mp2b ¬+∞<6
8 1 fvexi BV
9 8 a1i GGrpBV
10 hashinf BV¬BFinB=+∞
11 9 10 sylan GGrp¬BFinB=+∞
12 11 breq1d GGrp¬BFinB<6+∞<6
13 12 biimpd GGrp¬BFinB<6+∞<6
14 13 impancom GGrpB<6¬BFin+∞<6
15 7 14 mt3i GGrpB<6BFin
16 hashnncl BFinBB
17 15 16 syl GGrpB<6BB
18 3 17 mpbird GGrpB<6B
19 nnuz =1
20 18 19 eleqtrdi GGrpB<6B1
21 6nn 6
22 21 nnzi 6
23 22 a1i GGrpB<66
24 simpr GGrpB<6B<6
25 elfzo2 B1..^6B16B<6
26 20 23 24 25 syl3anbrc GGrpB<6B1..^6
27 df-6 6=5+1
28 27 oveq2i 1..^6=1..^5+1
29 28 eleq2i B1..^6B1..^5+1
30 5nn 5
31 30 19 eleqtri 51
32 fzosplitsni 51B1..^5+1B1..^5B=5
33 31 32 ax-mp B1..^5+1B1..^5B=5
34 29 33 bitri B1..^6B1..^5B=5
35 df-5 5=4+1
36 35 oveq2i 1..^5=1..^4+1
37 36 eleq2i B1..^5B1..^4+1
38 4nn 4
39 38 19 eleqtri 41
40 fzosplitsni 41B1..^4+1B1..^4B=4
41 39 40 ax-mp B1..^4+1B1..^4B=4
42 37 41 bitri B1..^5B1..^4B=4
43 df-4 4=3+1
44 43 oveq2i 1..^4=1..^3+1
45 44 eleq2i B1..^4B1..^3+1
46 3nn 3
47 46 19 eleqtri 31
48 fzosplitsni 31B1..^3+1B1..^3B=3
49 47 48 ax-mp B1..^3+1B1..^3B=3
50 45 49 bitri B1..^4B1..^3B=3
51 df-3 3=2+1
52 51 oveq2i 1..^3=1..^2+1
53 52 eleq2i B1..^3B1..^2+1
54 2eluzge1 21
55 fzosplitsni 21B1..^2+1B1..^2B=2
56 54 55 ax-mp B1..^2+1B1..^2B=2
57 53 56 bitri B1..^3B1..^2B=2
58 elsni B1B=1
59 fzo12sn 1..^2=1
60 58 59 eleq2s B1..^2B=1
61 60 adantl GGrpB1..^2B=1
62 hash1 1𝑜=1
63 61 62 eqtr4di GGrpB1..^2B=1𝑜
64 1nn0 10
65 61 64 eqeltrdi GGrpB1..^2B0
66 hashclb BVBFinB0
67 8 66 ax-mp BFinB0
68 65 67 sylibr GGrpB1..^2BFin
69 1onn 1𝑜ω
70 nnfi 1𝑜ω1𝑜Fin
71 69 70 ax-mp 1𝑜Fin
72 hashen BFin1𝑜FinB=1𝑜B1𝑜
73 68 71 72 sylancl GGrpB1..^2B=1𝑜B1𝑜
74 63 73 mpbid GGrpB1..^2B1𝑜
75 1 0cyg GGrpB1𝑜GCycGrp
76 cygabl GCycGrpGAbel
77 75 76 syl GGrpB1𝑜GAbel
78 74 77 syldan GGrpB1..^2GAbel
79 78 ex GGrpB1..^2GAbel
80 id B=2B=2
81 2prm 2
82 80 81 eqeltrdi B=2B
83 1 prmcyg GGrpBGCycGrp
84 83 76 syl GGrpBGAbel
85 84 ex GGrpBGAbel
86 82 85 syl5 GGrpB=2GAbel
87 79 86 jaod GGrpB1..^2B=2GAbel
88 57 87 biimtrid GGrpB1..^3GAbel
89 id B=3B=3
90 3prm 3
91 89 90 eqeltrdi B=3B
92 91 85 syl5 GGrpB=3GAbel
93 88 92 jaod GGrpB1..^3B=3GAbel
94 50 93 biimtrid GGrpB1..^4GAbel
95 simpl GGrpB=4GGrp
96 2z 2
97 eqid gExG=gExG
98 eqid odG=odG
99 1 97 98 gexdvds2 GGrp2gExG2xBodGx2
100 95 96 99 sylancl GGrpB=4gExG2xBodGx2
101 1 97 gex2abl GGrpgExG2GAbel
102 101 ex GGrpgExG2GAbel
103 102 adantr GGrpB=4gExG2GAbel
104 100 103 sylbird GGrpB=4xBodGx2GAbel
105 rexnal xB¬odGx2¬xBodGx2
106 95 adantr GGrpB=4xB¬odGx2GGrp
107 simprl GGrpB=4xB¬odGx2xB
108 1 98 odcl xBodGx0
109 108 ad2antrl GGrpB=4xB¬odGx2odGx0
110 4nn0 40
111 110 a1i GGrpB=4xB¬odGx240
112 simpr GGrpB=4B=4
113 112 110 eqeltrdi GGrpB=4B0
114 113 67 sylibr GGrpB=4BFin
115 114 adantr GGrpB=4xB¬odGx2BFin
116 1 98 oddvds2 GGrpBFinxBodGxB
117 106 115 107 116 syl3anc GGrpB=4xB¬odGx2odGxB
118 112 adantr GGrpB=4xB¬odGx2B=4
119 117 118 breqtrd GGrpB=4xB¬odGx2odGx4
120 sq2 22=4
121 2nn0 20
122 96 a1i GGrpB=4xB¬odGx22
123 1 98 odcl2 GGrpBFinxBodGx
124 106 115 107 123 syl3anc GGrpB=4xB¬odGx2odGx
125 pccl 2odGx2pCntodGx0
126 81 124 125 sylancr GGrpB=4xB¬odGx22pCntodGx0
127 126 nn0zd GGrpB=4xB¬odGx22pCntodGx
128 df-2 2=1+1
129 simprr GGrpB=4xB¬odGx2¬odGx2
130 dvdsexp 22pCntodGx012pCntodGx22pCntodGx21
131 130 3expia 22pCntodGx012pCntodGx22pCntodGx21
132 96 126 131 sylancr GGrpB=4xB¬odGx212pCntodGx22pCntodGx21
133 1z 1
134 eluz 2pCntodGx112pCntodGx2pCntodGx1
135 127 133 134 sylancl GGrpB=4xB¬odGx212pCntodGx2pCntodGx1
136 oveq2 n=22n=22
137 136 120 eqtrdi n=22n=4
138 137 breq2d n=2odGx2nodGx4
139 138 rspcev 20odGx4n0odGx2n
140 121 119 139 sylancr GGrpB=4xB¬odGx2n0odGx2n
141 pcprmpw2 2odGxn0odGx2nodGx=22pCntodGx
142 81 124 141 sylancr GGrpB=4xB¬odGx2n0odGx2nodGx=22pCntodGx
143 140 142 mpbid GGrpB=4xB¬odGx2odGx=22pCntodGx
144 143 eqcomd GGrpB=4xB¬odGx222pCntodGx=odGx
145 2cn 2
146 exp1 221=2
147 145 146 ax-mp 21=2
148 147 a1i GGrpB=4xB¬odGx221=2
149 144 148 breq12d GGrpB=4xB¬odGx222pCntodGx21odGx2
150 132 135 149 3imtr3d GGrpB=4xB¬odGx22pCntodGx1odGx2
151 129 150 mtod GGrpB=4xB¬odGx2¬2pCntodGx1
152 1re 1
153 126 nn0red GGrpB=4xB¬odGx22pCntodGx
154 ltnle 12pCntodGx1<2pCntodGx¬2pCntodGx1
155 152 153 154 sylancr GGrpB=4xB¬odGx21<2pCntodGx¬2pCntodGx1
156 151 155 mpbird GGrpB=4xB¬odGx21<2pCntodGx
157 nn0ltp1le 102pCntodGx01<2pCntodGx1+12pCntodGx
158 64 126 157 sylancr GGrpB=4xB¬odGx21<2pCntodGx1+12pCntodGx
159 156 158 mpbid GGrpB=4xB¬odGx21+12pCntodGx
160 128 159 eqbrtrid GGrpB=4xB¬odGx222pCntodGx
161 eluz2 2pCntodGx222pCntodGx22pCntodGx
162 122 127 160 161 syl3anbrc GGrpB=4xB¬odGx22pCntodGx2
163 dvdsexp 2202pCntodGx22222pCntodGx
164 96 121 162 163 mp3an12i GGrpB=4xB¬odGx22222pCntodGx
165 120 164 eqbrtrrid GGrpB=4xB¬odGx2422pCntodGx
166 165 143 breqtrrd GGrpB=4xB¬odGx24odGx
167 dvdseq odGx040odGx44odGxodGx=4
168 109 111 119 166 167 syl22anc GGrpB=4xB¬odGx2odGx=4
169 168 118 eqtr4d GGrpB=4xB¬odGx2odGx=B
170 1 98 106 107 169 iscygodd GGrpB=4xB¬odGx2GCycGrp
171 170 76 syl GGrpB=4xB¬odGx2GAbel
172 171 rexlimdvaa GGrpB=4xB¬odGx2GAbel
173 105 172 biimtrrid GGrpB=4¬xBodGx2GAbel
174 104 173 pm2.61d GGrpB=4GAbel
175 174 ex GGrpB=4GAbel
176 94 175 jaod GGrpB1..^4B=4GAbel
177 42 176 biimtrid GGrpB1..^5GAbel
178 id B=5B=5
179 5prm 5
180 178 179 eqeltrdi B=5B
181 180 85 syl5 GGrpB=5GAbel
182 177 181 jaod GGrpB1..^5B=5GAbel
183 34 182 biimtrid GGrpB1..^6GAbel
184 183 imp GGrpB1..^6GAbel
185 26 184 syldan GGrpB<6GAbel