Metamath Proof Explorer


Theorem mdetpmtr1

Description: The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses mdetpmtr.a A=NMatR
mdetpmtr.b B=BaseA
mdetpmtr.d D=NmaDetR
mdetpmtr.g G=BaseSymGrpN
mdetpmtr.s S=pmSgnN
mdetpmtr.z Z=ℤRHomR
mdetpmtr.t ·˙=R
mdetpmtr1.e E=iN,jNPiMj
Assertion mdetpmtr1 RCRingNFinMBPGDM=ZSP·˙DE

Proof

Step Hyp Ref Expression
1 mdetpmtr.a A=NMatR
2 mdetpmtr.b B=BaseA
3 mdetpmtr.d D=NmaDetR
4 mdetpmtr.g G=BaseSymGrpN
5 mdetpmtr.s S=pmSgnN
6 mdetpmtr.z Z=ℤRHomR
7 mdetpmtr.t ·˙=R
8 mdetpmtr1.e E=iN,jNPiMj
9 eqid BaseR=BaseR
10 eqid 0R=0R
11 crngring RCRingRRing
12 11 ad2antrr RCRingNFinMBPGRRing
13 4 fvexi GV
14 13 a1i RCRingNFinMBPGGV
15 simplr RCRingNFinMBPGNFin
16 5 4 psgndmfi NFinSFnG
17 fnfun SFnGFunS
18 15 16 17 3syl RCRingNFinMBPGFunS
19 simprr RCRingNFinMBPGPG
20 fndm SFnGdomS=G
21 15 16 20 3syl RCRingNFinMBPGdomS=G
22 19 21 eleqtrrd RCRingNFinMBPGPdomS
23 fvco FunSPdomSZSP=ZSP
24 18 22 23 syl2anc RCRingNFinMBPGZSP=ZSP
25 4 5 6 zrhpsgnelbas RRingNFinPGZSPBaseR
26 12 15 19 25 syl3anc RCRingNFinMBPGZSPBaseR
27 24 26 eqeltrd RCRingNFinMBPGZSPBaseR
28 12 adantr RCRingNFinMBPGpGRRing
29 4 5 cofipsgn NFinpGZSp=ZSp
30 15 29 sylan RCRingNFinMBPGpGZSp=ZSp
31 simpllr RCRingNFinMBPGpGNFin
32 simpr RCRingNFinMBPGpGpG
33 4 5 6 zrhpsgnelbas RRingNFinpGZSpBaseR
34 28 31 32 33 syl3anc RCRingNFinMBPGpGZSpBaseR
35 30 34 eqeltrd RCRingNFinMBPGpGZSpBaseR
36 eqid mulGrpR=mulGrpR
37 36 9 mgpbas BaseR=BasemulGrpR
38 36 crngmgp RCRingmulGrpRCMnd
39 38 ad3antrrr RCRingNFinMBPGpGmulGrpRCMnd
40 eqid SymGrpN=SymGrpN
41 40 4 symgfv pGxNpxN
42 41 adantll RCRingNFinMBPGpGxNpxN
43 simpr RCRingNFinMBPGpGxNxN
44 simpll RCRingNFinMBPGRCRing
45 simp1rr RCRingNFinMBPGiNjNPG
46 simp2 RCRingNFinMBPGiNjNiN
47 40 4 symgfv PGiNPiN
48 45 46 47 syl2anc RCRingNFinMBPGiNjNPiN
49 simp3 RCRingNFinMBPGiNjNjN
50 simp1rl RCRingNFinMBPGiNjNMB
51 1 9 2 48 49 50 matecld RCRingNFinMBPGiNjNPiMjBaseR
52 1 9 2 15 44 51 matbas2d RCRingNFinMBPGiN,jNPiMjB
53 8 52 eqeltrid RCRingNFinMBPGEB
54 53 ad2antrr RCRingNFinMBPGpGxNEB
55 1 9 2 42 43 54 matecld RCRingNFinMBPGpGxNpxExBaseR
56 55 ralrimiva RCRingNFinMBPGpGxNpxExBaseR
57 37 39 31 56 gsummptcl RCRingNFinMBPGpGmulGrpRxNpxExBaseR
58 9 7 ringcl RRingZSpBaseRmulGrpRxNpxExBaseRZSp·˙mulGrpRxNpxExBaseR
59 28 35 57 58 syl3anc RCRingNFinMBPGpGZSp·˙mulGrpRxNpxExBaseR
60 eqid pGZSp·˙mulGrpRxNpxEx=pGZSp·˙mulGrpRxNpxEx
61 40 4 symgbasfi NFinGFin
62 15 61 syl RCRingNFinMBPGGFin
63 ovexd RCRingNFinMBPGpGZSp·˙mulGrpRxNpxExV
64 fvexd RCRingNFinMBPG0RV
65 60 62 63 64 fsuppmptdm RCRingNFinMBPGfinSupp0RpGZSp·˙mulGrpRxNpxEx
66 9 10 7 12 14 27 59 65 gsummulc2 RCRingNFinMBPGRpGZSP·˙ZSp·˙mulGrpRxNpxEx=ZSP·˙RpGZSp·˙mulGrpRxNpxEx
67 nfcv _qZSPp·˙mulGrpRxNPpxMx
68 fveq2 q=PpZSq=ZSPp
69 fveq1 q=Ppqx=Ppx
70 69 oveq1d q=PpqxMx=PpxMx
71 70 mpteq2dv q=PpxNqxMx=xNPpxMx
72 71 oveq2d q=PpmulGrpRxNqxMx=mulGrpRxNPpxMx
73 68 72 oveq12d q=PpZSq·˙mulGrpRxNqxMx=ZSPp·˙mulGrpRxNPpxMx
74 ringcmn RRingRCMnd
75 12 74 syl RCRingNFinMBPGRCMnd
76 ssidd RCRingNFinMBPGBaseRBaseR
77 12 adantr RCRingNFinMBPGqGRRing
78 4 5 cofipsgn NFinqGZSq=ZSq
79 15 78 sylan RCRingNFinMBPGqGZSq=ZSq
80 simpllr RCRingNFinMBPGqGNFin
81 simpr RCRingNFinMBPGqGqG
82 4 5 6 zrhpsgnelbas RRingNFinqGZSqBaseR
83 77 80 81 82 syl3anc RCRingNFinMBPGqGZSqBaseR
84 79 83 eqeltrd RCRingNFinMBPGqGZSqBaseR
85 38 ad3antrrr RCRingNFinMBPGqGmulGrpRCMnd
86 40 4 symgfv qGxNqxN
87 86 adantll RCRingNFinMBPGqGxNqxN
88 simpr RCRingNFinMBPGqGxNxN
89 simprl RCRingNFinMBPGMB
90 89 ad2antrr RCRingNFinMBPGqGxNMB
91 1 9 2 87 88 90 matecld RCRingNFinMBPGqGxNqxMxBaseR
92 91 ralrimiva RCRingNFinMBPGqGxNqxMxBaseR
93 37 85 80 92 gsummptcl RCRingNFinMBPGqGmulGrpRxNqxMxBaseR
94 9 7 ringcl RRingZSqBaseRmulGrpRxNqxMxBaseRZSq·˙mulGrpRxNqxMxBaseR
95 77 84 93 94 syl3anc RCRingNFinMBPGqGZSq·˙mulGrpRxNqxMxBaseR
96 eqid +SymGrpN=+SymGrpN
97 40 4 96 symgov PGpGP+SymGrpNp=Pp
98 40 4 96 symgcl PGpGP+SymGrpNpG
99 97 98 eqeltrrd PGpGPpG
100 19 99 sylan RCRingNFinMBPGpGPpG
101 19 adantr RCRingNFinMBPGqGPG
102 4 symgfcoeu NFinPGqG∃!pGq=Pp
103 80 101 81 102 syl3anc RCRingNFinMBPGqG∃!pGq=Pp
104 67 9 10 73 75 62 76 95 100 103 gsummptf1o RCRingNFinMBPGRqGZSq·˙mulGrpRxNqxMx=RpGZSPp·˙mulGrpRxNPpxMx
105 3 1 2 4 6 5 7 36 mdetleib MBDM=RqGZSq·˙mulGrpRxNqxMx
106 105 ad2antrl RCRingNFinMBPGDM=RqGZSq·˙mulGrpRxNqxMx
107 27 adantr RCRingNFinMBPGpGZSPBaseR
108 9 7 ringass RRingZSPBaseRZSpBaseRmulGrpRxNpxExBaseRZSP·˙ZSp·˙mulGrpRxNpxEx=ZSP·˙ZSp·˙mulGrpRxNpxEx
109 28 107 35 57 108 syl13anc RCRingNFinMBPGpGZSP·˙ZSp·˙mulGrpRxNpxEx=ZSP·˙ZSp·˙mulGrpRxNpxEx
110 24 adantr RCRingNFinMBPGpGZSP=ZSP
111 110 30 oveq12d RCRingNFinMBPGpGZSP·˙ZSp=ZSP·˙ZSp
112 4 5 cofipsgn NFinPpGZSPp=ZSPp
113 31 100 112 syl2anc RCRingNFinMBPGpGZSPp=ZSPp
114 19 adantr RCRingNFinMBPGpGPG
115 40 5 4 psgnco NFinPGpGSPp=SPSp
116 31 114 32 115 syl3anc RCRingNFinMBPGpGSPp=SPSp
117 116 fveq2d RCRingNFinMBPGpGZSPp=ZSPSp
118 6 zrhrhm RRingZringRingHomR
119 12 118 syl RCRingNFinMBPGZringRingHomR
120 119 adantr RCRingNFinMBPGpGZringRingHomR
121 1z 1
122 neg1z 1
123 prssi 1111
124 121 122 123 mp2an 11
125 4 5 psgnran NFinPGSP11
126 31 114 125 syl2anc RCRingNFinMBPGpGSP11
127 124 126 sselid RCRingNFinMBPGpGSP
128 4 5 psgnran NFinpGSp11
129 15 128 sylan RCRingNFinMBPGpGSp11
130 124 129 sselid RCRingNFinMBPGpGSp
131 zringbas =Basering
132 zringmulr ×=ring
133 131 132 7 rhmmul ZringRingHomRSPSpZSPSp=ZSP·˙ZSp
134 120 127 130 133 syl3anc RCRingNFinMBPGpGZSPSp=ZSP·˙ZSp
135 113 117 134 3eqtrrd RCRingNFinMBPGpGZSP·˙ZSp=ZSPp
136 111 135 eqtrd RCRingNFinMBPGpGZSP·˙ZSp=ZSPp
137 8 a1i RCRingNFinMBPGpGxNE=iN,jNPiMj
138 simprl RCRingNFinMBPGpGxNi=pxj=xi=px
139 138 fveq2d RCRingNFinMBPGpGxNi=pxj=xPi=Ppx
140 simpllr RCRingNFinMBPGpGxNi=pxj=xpG
141 40 4 symgbasf pGp:NN
142 ffun p:NNFunp
143 140 141 142 3syl RCRingNFinMBPGpGxNi=pxj=xFunp
144 simplr RCRingNFinMBPGpGxNi=pxj=xxN
145 fdm p:NNdomp=N
146 140 141 145 3syl RCRingNFinMBPGpGxNi=pxj=xdomp=N
147 144 146 eleqtrrd RCRingNFinMBPGpGxNi=pxj=xxdomp
148 fvco FunpxdompPpx=Ppx
149 143 147 148 syl2anc RCRingNFinMBPGpGxNi=pxj=xPpx=Ppx
150 139 149 eqtr4d RCRingNFinMBPGpGxNi=pxj=xPi=Ppx
151 simprr RCRingNFinMBPGpGxNi=pxj=xj=x
152 150 151 oveq12d RCRingNFinMBPGpGxNi=pxj=xPiMj=PpxMx
153 ovexd RCRingNFinMBPGpGxNPpxMxV
154 137 152 42 43 153 ovmpod RCRingNFinMBPGpGxNpxEx=PpxMx
155 154 mpteq2dva RCRingNFinMBPGpGxNpxEx=xNPpxMx
156 155 oveq2d RCRingNFinMBPGpGmulGrpRxNpxEx=mulGrpRxNPpxMx
157 136 156 oveq12d RCRingNFinMBPGpGZSP·˙ZSp·˙mulGrpRxNpxEx=ZSPp·˙mulGrpRxNPpxMx
158 109 157 eqtr3d RCRingNFinMBPGpGZSP·˙ZSp·˙mulGrpRxNpxEx=ZSPp·˙mulGrpRxNPpxMx
159 158 mpteq2dva RCRingNFinMBPGpGZSP·˙ZSp·˙mulGrpRxNpxEx=pGZSPp·˙mulGrpRxNPpxMx
160 159 oveq2d RCRingNFinMBPGRpGZSP·˙ZSp·˙mulGrpRxNpxEx=RpGZSPp·˙mulGrpRxNPpxMx
161 104 106 160 3eqtr4d RCRingNFinMBPGDM=RpGZSP·˙ZSp·˙mulGrpRxNpxEx
162 3 1 2 4 6 5 7 36 mdetleib EBDE=RpGZSp·˙mulGrpRxNpxEx
163 53 162 syl RCRingNFinMBPGDE=RpGZSp·˙mulGrpRxNpxEx
164 163 oveq2d RCRingNFinMBPGZSP·˙DE=ZSP·˙RpGZSp·˙mulGrpRxNpxEx
165 66 161 164 3eqtr4d RCRingNFinMBPGDM=ZSP·˙DE