Metamath Proof Explorer


Theorem mdetpmtr1

Description: The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses mdetpmtr.a A = N Mat R
mdetpmtr.b B = Base A
mdetpmtr.d D = N maDet R
mdetpmtr.g G = Base SymGrp N
mdetpmtr.s S = pmSgn N
mdetpmtr.z Z = ℤRHom R
mdetpmtr.t · ˙ = R
mdetpmtr1.e E = i N , j N P i M j
Assertion mdetpmtr1 R CRing N Fin M B P G D M = Z S P · ˙ D E

Proof

Step Hyp Ref Expression
1 mdetpmtr.a A = N Mat R
2 mdetpmtr.b B = Base A
3 mdetpmtr.d D = N maDet R
4 mdetpmtr.g G = Base SymGrp N
5 mdetpmtr.s S = pmSgn N
6 mdetpmtr.z Z = ℤRHom R
7 mdetpmtr.t · ˙ = R
8 mdetpmtr1.e E = i N , j N P i M j
9 eqid Base R = Base R
10 eqid 0 R = 0 R
11 crngring R CRing R Ring
12 11 ad2antrr R CRing N Fin M B P G R Ring
13 4 fvexi G V
14 13 a1i R CRing N Fin M B P G G V
15 simplr R CRing N Fin M B P G N Fin
16 5 4 psgndmfi N Fin S Fn G
17 fnfun S Fn G Fun S
18 15 16 17 3syl R CRing N Fin M B P G Fun S
19 simprr R CRing N Fin M B P G P G
20 fndm S Fn G dom S = G
21 15 16 20 3syl R CRing N Fin M B P G dom S = G
22 19 21 eleqtrrd R CRing N Fin M B P G P dom S
23 fvco Fun S P dom S Z S P = Z S P
24 18 22 23 syl2anc R CRing N Fin M B P G Z S P = Z S P
25 4 5 6 zrhpsgnelbas R Ring N Fin P G Z S P Base R
26 12 15 19 25 syl3anc R CRing N Fin M B P G Z S P Base R
27 24 26 eqeltrd R CRing N Fin M B P G Z S P Base R
28 12 adantr R CRing N Fin M B P G p G R Ring
29 4 5 cofipsgn N Fin p G Z S p = Z S p
30 15 29 sylan R CRing N Fin M B P G p G Z S p = Z S p
31 simpllr R CRing N Fin M B P G p G N Fin
32 simpr R CRing N Fin M B P G p G p G
33 4 5 6 zrhpsgnelbas R Ring N Fin p G Z S p Base R
34 28 31 32 33 syl3anc R CRing N Fin M B P G p G Z S p Base R
35 30 34 eqeltrd R CRing N Fin M B P G p G Z S p Base R
36 eqid mulGrp R = mulGrp R
37 36 9 mgpbas Base R = Base mulGrp R
38 36 crngmgp R CRing mulGrp R CMnd
39 38 ad3antrrr R CRing N Fin M B P G p G mulGrp R CMnd
40 eqid SymGrp N = SymGrp N
41 40 4 symgfv p G x N p x N
42 41 adantll R CRing N Fin M B P G p G x N p x N
43 simpr R CRing N Fin M B P G p G x N x N
44 simpll R CRing N Fin M B P G R CRing
45 simp1rr R CRing N Fin M B P G i N j N P G
46 simp2 R CRing N Fin M B P G i N j N i N
47 40 4 symgfv P G i N P i N
48 45 46 47 syl2anc R CRing N Fin M B P G i N j N P i N
49 simp3 R CRing N Fin M B P G i N j N j N
50 simp1rl R CRing N Fin M B P G i N j N M B
51 1 9 2 48 49 50 matecld R CRing N Fin M B P G i N j N P i M j Base R
52 1 9 2 15 44 51 matbas2d R CRing N Fin M B P G i N , j N P i M j B
53 8 52 eqeltrid R CRing N Fin M B P G E B
54 53 ad2antrr R CRing N Fin M B P G p G x N E B
55 1 9 2 42 43 54 matecld R CRing N Fin M B P G p G x N p x E x Base R
56 55 ralrimiva R CRing N Fin M B P G p G x N p x E x Base R
57 37 39 31 56 gsummptcl R CRing N Fin M B P G p G mulGrp R x N p x E x Base R
58 9 7 ringcl R Ring Z S p Base R mulGrp R x N p x E x Base R Z S p · ˙ mulGrp R x N p x E x Base R
59 28 35 57 58 syl3anc R CRing N Fin M B P G p G Z S p · ˙ mulGrp R x N p x E x Base R
60 eqid p G Z S p · ˙ mulGrp R x N p x E x = p G Z S p · ˙ mulGrp R x N p x E x
61 40 4 symgbasfi N Fin G Fin
62 15 61 syl R CRing N Fin M B P G G Fin
63 ovexd R CRing N Fin M B P G p G Z S p · ˙ mulGrp R x N p x E x V
64 fvexd R CRing N Fin M B P G 0 R V
65 60 62 63 64 fsuppmptdm R CRing N Fin M B P G finSupp 0 R p G Z S p · ˙ mulGrp R x N p x E x
66 9 10 7 12 14 27 59 65 gsummulc2 R CRing N Fin M B P G R p G Z S P · ˙ Z S p · ˙ mulGrp R x N p x E x = Z S P · ˙ R p G Z S p · ˙ mulGrp R x N p x E x
67 nfcv _ q Z S P p · ˙ mulGrp R x N P p x M x
68 fveq2 q = P p Z S q = Z S P p
69 fveq1 q = P p q x = P p x
70 69 oveq1d q = P p q x M x = P p x M x
71 70 mpteq2dv q = P p x N q x M x = x N P p x M x
72 71 oveq2d q = P p mulGrp R x N q x M x = mulGrp R x N P p x M x
73 68 72 oveq12d q = P p Z S q · ˙ mulGrp R x N q x M x = Z S P p · ˙ mulGrp R x N P p x M x
74 ringcmn R Ring R CMnd
75 12 74 syl R CRing N Fin M B P G R CMnd
76 ssidd R CRing N Fin M B P G Base R Base R
77 12 adantr R CRing N Fin M B P G q G R Ring
78 4 5 cofipsgn N Fin q G Z S q = Z S q
79 15 78 sylan R CRing N Fin M B P G q G Z S q = Z S q
80 simpllr R CRing N Fin M B P G q G N Fin
81 simpr R CRing N Fin M B P G q G q G
82 4 5 6 zrhpsgnelbas R Ring N Fin q G Z S q Base R
83 77 80 81 82 syl3anc R CRing N Fin M B P G q G Z S q Base R
84 79 83 eqeltrd R CRing N Fin M B P G q G Z S q Base R
85 38 ad3antrrr R CRing N Fin M B P G q G mulGrp R CMnd
86 40 4 symgfv q G x N q x N
87 86 adantll R CRing N Fin M B P G q G x N q x N
88 simpr R CRing N Fin M B P G q G x N x N
89 simprl R CRing N Fin M B P G M B
90 89 ad2antrr R CRing N Fin M B P G q G x N M B
91 1 9 2 87 88 90 matecld R CRing N Fin M B P G q G x N q x M x Base R
92 91 ralrimiva R CRing N Fin M B P G q G x N q x M x Base R
93 37 85 80 92 gsummptcl R CRing N Fin M B P G q G mulGrp R x N q x M x Base R
94 9 7 ringcl R Ring Z S q Base R mulGrp R x N q x M x Base R Z S q · ˙ mulGrp R x N q x M x Base R
95 77 84 93 94 syl3anc R CRing N Fin M B P G q G Z S q · ˙ mulGrp R x N q x M x Base R
96 eqid + SymGrp N = + SymGrp N
97 40 4 96 symgov P G p G P + SymGrp N p = P p
98 40 4 96 symgcl P G p G P + SymGrp N p G
99 97 98 eqeltrrd P G p G P p G
100 19 99 sylan R CRing N Fin M B P G p G P p G
101 19 adantr R CRing N Fin M B P G q G P G
102 4 symgfcoeu N Fin P G q G ∃! p G q = P p
103 80 101 81 102 syl3anc R CRing N Fin M B P G q G ∃! p G q = P p
104 67 9 10 73 75 62 76 95 100 103 gsummptf1o R CRing N Fin M B P G R q G Z S q · ˙ mulGrp R x N q x M x = R p G Z S P p · ˙ mulGrp R x N P p x M x
105 3 1 2 4 6 5 7 36 mdetleib M B D M = R q G Z S q · ˙ mulGrp R x N q x M x
106 105 ad2antrl R CRing N Fin M B P G D M = R q G Z S q · ˙ mulGrp R x N q x M x
107 27 adantr R CRing N Fin M B P G p G Z S P Base R
108 9 7 ringass R Ring Z S P Base R Z S p Base R mulGrp R x N p x E x Base R Z S P · ˙ Z S p · ˙ mulGrp R x N p x E x = Z S P · ˙ Z S p · ˙ mulGrp R x N p x E x
109 28 107 35 57 108 syl13anc R CRing N Fin M B P G p G Z S P · ˙ Z S p · ˙ mulGrp R x N p x E x = Z S P · ˙ Z S p · ˙ mulGrp R x N p x E x
110 24 adantr R CRing N Fin M B P G p G Z S P = Z S P
111 110 30 oveq12d R CRing N Fin M B P G p G Z S P · ˙ Z S p = Z S P · ˙ Z S p
112 4 5 cofipsgn N Fin P p G Z S P p = Z S P p
113 31 100 112 syl2anc R CRing N Fin M B P G p G Z S P p = Z S P p
114 19 adantr R CRing N Fin M B P G p G P G
115 40 5 4 psgnco N Fin P G p G S P p = S P S p
116 31 114 32 115 syl3anc R CRing N Fin M B P G p G S P p = S P S p
117 116 fveq2d R CRing N Fin M B P G p G Z S P p = Z S P S p
118 6 zrhrhm R Ring Z ring RingHom R
119 12 118 syl R CRing N Fin M B P G Z ring RingHom R
120 119 adantr R CRing N Fin M B P G p G Z ring RingHom R
121 1z 1
122 neg1z 1
123 prssi 1 1 1 1
124 121 122 123 mp2an 1 1
125 4 5 psgnran N Fin P G S P 1 1
126 31 114 125 syl2anc R CRing N Fin M B P G p G S P 1 1
127 124 126 sselid R CRing N Fin M B P G p G S P
128 4 5 psgnran N Fin p G S p 1 1
129 15 128 sylan R CRing N Fin M B P G p G S p 1 1
130 124 129 sselid R CRing N Fin M B P G p G S p
131 zringbas = Base ring
132 zringmulr × = ring
133 131 132 7 rhmmul Z ring RingHom R S P S p Z S P S p = Z S P · ˙ Z S p
134 120 127 130 133 syl3anc R CRing N Fin M B P G p G Z S P S p = Z S P · ˙ Z S p
135 113 117 134 3eqtrrd R CRing N Fin M B P G p G Z S P · ˙ Z S p = Z S P p
136 111 135 eqtrd R CRing N Fin M B P G p G Z S P · ˙ Z S p = Z S P p
137 8 a1i R CRing N Fin M B P G p G x N E = i N , j N P i M j
138 simprl R CRing N Fin M B P G p G x N i = p x j = x i = p x
139 138 fveq2d R CRing N Fin M B P G p G x N i = p x j = x P i = P p x
140 simpllr R CRing N Fin M B P G p G x N i = p x j = x p G
141 40 4 symgbasf p G p : N N
142 ffun p : N N Fun p
143 140 141 142 3syl R CRing N Fin M B P G p G x N i = p x j = x Fun p
144 simplr R CRing N Fin M B P G p G x N i = p x j = x x N
145 fdm p : N N dom p = N
146 140 141 145 3syl R CRing N Fin M B P G p G x N i = p x j = x dom p = N
147 144 146 eleqtrrd R CRing N Fin M B P G p G x N i = p x j = x x dom p
148 fvco Fun p x dom p P p x = P p x
149 143 147 148 syl2anc R CRing N Fin M B P G p G x N i = p x j = x P p x = P p x
150 139 149 eqtr4d R CRing N Fin M B P G p G x N i = p x j = x P i = P p x
151 simprr R CRing N Fin M B P G p G x N i = p x j = x j = x
152 150 151 oveq12d R CRing N Fin M B P G p G x N i = p x j = x P i M j = P p x M x
153 ovexd R CRing N Fin M B P G p G x N P p x M x V
154 137 152 42 43 153 ovmpod R CRing N Fin M B P G p G x N p x E x = P p x M x
155 154 mpteq2dva R CRing N Fin M B P G p G x N p x E x = x N P p x M x
156 155 oveq2d R CRing N Fin M B P G p G mulGrp R x N p x E x = mulGrp R x N P p x M x
157 136 156 oveq12d R CRing N Fin M B P G p G Z S P · ˙ Z S p · ˙ mulGrp R x N p x E x = Z S P p · ˙ mulGrp R x N P p x M x
158 109 157 eqtr3d R CRing N Fin M B P G p G Z S P · ˙ Z S p · ˙ mulGrp R x N p x E x = Z S P p · ˙ mulGrp R x N P p x M x
159 158 mpteq2dva R CRing N Fin M B P G p G Z S P · ˙ Z S p · ˙ mulGrp R x N p x E x = p G Z S P p · ˙ mulGrp R x N P p x M x
160 159 oveq2d R CRing N Fin M B P G R p G Z S P · ˙ Z S p · ˙ mulGrp R x N p x E x = R p G Z S P p · ˙ mulGrp R x N P p x M x
161 104 106 160 3eqtr4d R CRing N Fin M B P G D M = R p G Z S P · ˙ Z S p · ˙ mulGrp R x N p x E x
162 3 1 2 4 6 5 7 36 mdetleib E B D E = R p G Z S p · ˙ mulGrp R x N p x E x
163 53 162 syl R CRing N Fin M B P G D E = R p G Z S p · ˙ mulGrp R x N p x E x
164 163 oveq2d R CRing N Fin M B P G Z S P · ˙ D E = Z S P · ˙ R p G Z S p · ˙ mulGrp R x N p x E x
165 66 161 164 3eqtr4d R CRing N Fin M B P G D M = Z S P · ˙ D E