| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetpmtr.a |
|
| 2 |
|
mdetpmtr.b |
|
| 3 |
|
mdetpmtr.d |
|
| 4 |
|
mdetpmtr.g |
|
| 5 |
|
mdetpmtr.s |
|
| 6 |
|
mdetpmtr.z |
|
| 7 |
|
mdetpmtr.t |
|
| 8 |
|
mdetpmtr1.e |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
crngring |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
4
|
fvexi |
|
| 14 |
13
|
a1i |
|
| 15 |
|
simplr |
|
| 16 |
5 4
|
psgndmfi |
|
| 17 |
|
fnfun |
|
| 18 |
15 16 17
|
3syl |
|
| 19 |
|
simprr |
|
| 20 |
|
fndm |
|
| 21 |
15 16 20
|
3syl |
|
| 22 |
19 21
|
eleqtrrd |
|
| 23 |
|
fvco |
|
| 24 |
18 22 23
|
syl2anc |
|
| 25 |
4 5 6
|
zrhpsgnelbas |
|
| 26 |
12 15 19 25
|
syl3anc |
|
| 27 |
24 26
|
eqeltrd |
|
| 28 |
12
|
adantr |
|
| 29 |
4 5
|
cofipsgn |
|
| 30 |
15 29
|
sylan |
|
| 31 |
|
simpllr |
|
| 32 |
|
simpr |
|
| 33 |
4 5 6
|
zrhpsgnelbas |
|
| 34 |
28 31 32 33
|
syl3anc |
|
| 35 |
30 34
|
eqeltrd |
|
| 36 |
|
eqid |
|
| 37 |
36 9
|
mgpbas |
|
| 38 |
36
|
crngmgp |
|
| 39 |
38
|
ad3antrrr |
|
| 40 |
|
eqid |
|
| 41 |
40 4
|
symgfv |
|
| 42 |
41
|
adantll |
|
| 43 |
|
simpr |
|
| 44 |
|
simpll |
|
| 45 |
|
simp1rr |
|
| 46 |
|
simp2 |
|
| 47 |
40 4
|
symgfv |
|
| 48 |
45 46 47
|
syl2anc |
|
| 49 |
|
simp3 |
|
| 50 |
|
simp1rl |
|
| 51 |
1 9 2 48 49 50
|
matecld |
|
| 52 |
1 9 2 15 44 51
|
matbas2d |
|
| 53 |
8 52
|
eqeltrid |
|
| 54 |
53
|
ad2antrr |
|
| 55 |
1 9 2 42 43 54
|
matecld |
|
| 56 |
55
|
ralrimiva |
|
| 57 |
37 39 31 56
|
gsummptcl |
|
| 58 |
9 7
|
ringcl |
|
| 59 |
28 35 57 58
|
syl3anc |
|
| 60 |
|
eqid |
|
| 61 |
40 4
|
symgbasfi |
|
| 62 |
15 61
|
syl |
|
| 63 |
|
ovexd |
|
| 64 |
|
fvexd |
|
| 65 |
60 62 63 64
|
fsuppmptdm |
|
| 66 |
9 10 7 12 14 27 59 65
|
gsummulc2 |
|
| 67 |
|
nfcv |
|
| 68 |
|
fveq2 |
|
| 69 |
|
fveq1 |
|
| 70 |
69
|
oveq1d |
|
| 71 |
70
|
mpteq2dv |
|
| 72 |
71
|
oveq2d |
|
| 73 |
68 72
|
oveq12d |
|
| 74 |
|
ringcmn |
|
| 75 |
12 74
|
syl |
|
| 76 |
|
ssidd |
|
| 77 |
12
|
adantr |
|
| 78 |
4 5
|
cofipsgn |
|
| 79 |
15 78
|
sylan |
|
| 80 |
|
simpllr |
|
| 81 |
|
simpr |
|
| 82 |
4 5 6
|
zrhpsgnelbas |
|
| 83 |
77 80 81 82
|
syl3anc |
|
| 84 |
79 83
|
eqeltrd |
|
| 85 |
38
|
ad3antrrr |
|
| 86 |
40 4
|
symgfv |
|
| 87 |
86
|
adantll |
|
| 88 |
|
simpr |
|
| 89 |
|
simprl |
|
| 90 |
89
|
ad2antrr |
|
| 91 |
1 9 2 87 88 90
|
matecld |
|
| 92 |
91
|
ralrimiva |
|
| 93 |
37 85 80 92
|
gsummptcl |
|
| 94 |
9 7
|
ringcl |
|
| 95 |
77 84 93 94
|
syl3anc |
|
| 96 |
|
eqid |
|
| 97 |
40 4 96
|
symgov |
|
| 98 |
40 4 96
|
symgcl |
|
| 99 |
97 98
|
eqeltrrd |
|
| 100 |
19 99
|
sylan |
|
| 101 |
19
|
adantr |
|
| 102 |
4
|
symgfcoeu |
|
| 103 |
80 101 81 102
|
syl3anc |
|
| 104 |
67 9 10 73 75 62 76 95 100 103
|
gsummptf1o |
|
| 105 |
3 1 2 4 6 5 7 36
|
mdetleib |
|
| 106 |
105
|
ad2antrl |
|
| 107 |
27
|
adantr |
|
| 108 |
9 7
|
ringass |
|
| 109 |
28 107 35 57 108
|
syl13anc |
|
| 110 |
24
|
adantr |
|
| 111 |
110 30
|
oveq12d |
|
| 112 |
4 5
|
cofipsgn |
|
| 113 |
31 100 112
|
syl2anc |
|
| 114 |
19
|
adantr |
|
| 115 |
40 5 4
|
psgnco |
|
| 116 |
31 114 32 115
|
syl3anc |
|
| 117 |
116
|
fveq2d |
|
| 118 |
6
|
zrhrhm |
|
| 119 |
12 118
|
syl |
|
| 120 |
119
|
adantr |
|
| 121 |
|
1z |
|
| 122 |
|
neg1z |
|
| 123 |
|
prssi |
|
| 124 |
121 122 123
|
mp2an |
|
| 125 |
4 5
|
psgnran |
|
| 126 |
31 114 125
|
syl2anc |
|
| 127 |
124 126
|
sselid |
|
| 128 |
4 5
|
psgnran |
|
| 129 |
15 128
|
sylan |
|
| 130 |
124 129
|
sselid |
|
| 131 |
|
zringbas |
|
| 132 |
|
zringmulr |
|
| 133 |
131 132 7
|
rhmmul |
|
| 134 |
120 127 130 133
|
syl3anc |
|
| 135 |
113 117 134
|
3eqtrrd |
|
| 136 |
111 135
|
eqtrd |
|
| 137 |
8
|
a1i |
|
| 138 |
|
simprl |
|
| 139 |
138
|
fveq2d |
|
| 140 |
|
simpllr |
|
| 141 |
40 4
|
symgbasf |
|
| 142 |
|
ffun |
|
| 143 |
140 141 142
|
3syl |
|
| 144 |
|
simplr |
|
| 145 |
|
fdm |
|
| 146 |
140 141 145
|
3syl |
|
| 147 |
144 146
|
eleqtrrd |
|
| 148 |
|
fvco |
|
| 149 |
143 147 148
|
syl2anc |
|
| 150 |
139 149
|
eqtr4d |
|
| 151 |
|
simprr |
|
| 152 |
150 151
|
oveq12d |
|
| 153 |
|
ovexd |
|
| 154 |
137 152 42 43 153
|
ovmpod |
|
| 155 |
154
|
mpteq2dva |
|
| 156 |
155
|
oveq2d |
|
| 157 |
136 156
|
oveq12d |
|
| 158 |
109 157
|
eqtr3d |
|
| 159 |
158
|
mpteq2dva |
|
| 160 |
159
|
oveq2d |
|
| 161 |
104 106 160
|
3eqtr4d |
|
| 162 |
3 1 2 4 6 5 7 36
|
mdetleib |
|
| 163 |
53 162
|
syl |
|
| 164 |
163
|
oveq2d |
|
| 165 |
66 161 164
|
3eqtr4d |
|