Metamath Proof Explorer


Theorem mdetrlin

Description: The determinant function is additive for each row: The matrices X, Y, Z are identical except for the I's row, and the I's row of the matrix X is the componentwise sum of the I's row of the matrices Y and Z. In this case the determinant of X is the sum of the determinants of Y and Z. (Contributed by SO, 9-Jul-2018) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses mdetrlin.d D=NmaDetR
mdetrlin.a A=NMatR
mdetrlin.b B=BaseA
mdetrlin.p +˙=+R
mdetrlin.r φRCRing
mdetrlin.x φXB
mdetrlin.y φYB
mdetrlin.z φZB
mdetrlin.i φIN
mdetrlin.eq φXI×N=YI×N+˙fZI×N
mdetrlin.ne1 φXNI×N=YNI×N
mdetrlin.ne2 φXNI×N=ZNI×N
Assertion mdetrlin φDX=DY+˙DZ

Proof

Step Hyp Ref Expression
1 mdetrlin.d D=NmaDetR
2 mdetrlin.a A=NMatR
3 mdetrlin.b B=BaseA
4 mdetrlin.p +˙=+R
5 mdetrlin.r φRCRing
6 mdetrlin.x φXB
7 mdetrlin.y φYB
8 mdetrlin.z φZB
9 mdetrlin.i φIN
10 mdetrlin.eq φXI×N=YI×N+˙fZI×N
11 mdetrlin.ne1 φXNI×N=YNI×N
12 mdetrlin.ne2 φXNI×N=ZNI×N
13 fvex BaseSymGrpNV
14 ovex ℤRHomRpmSgnNpRmulGrpRrNrYprV
15 eqid pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr=pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr
16 14 15 fnmpti pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYprFnBaseSymGrpN
17 ovex ℤRHomRpmSgnNpRmulGrpRrNrZprV
18 eqid pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr=pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr
19 17 18 fnmpti pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZprFnBaseSymGrpN
20 ofmpteq BaseSymGrpNVpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYprFnBaseSymGrpNpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZprFnBaseSymGrpNpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙fpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr=pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙ℤRHomRpmSgnNpRmulGrpRrNrZpr
21 13 16 19 20 mp3an pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙fpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr=pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙ℤRHomRpmSgnNpRmulGrpRrNrZpr
22 crngring RCRingRRing
23 5 22 syl φRRing
24 23 adantr φpBaseSymGrpNRRing
25 2 3 matrcl YBNFinRV
26 7 25 syl φNFinRV
27 26 simpld φNFin
28 zrhpsgnmhm RRingNFinℤRHomRpmSgnNSymGrpNMndHommulGrpR
29 23 27 28 syl2anc φℤRHomRpmSgnNSymGrpNMndHommulGrpR
30 eqid BaseSymGrpN=BaseSymGrpN
31 eqid mulGrpR=mulGrpR
32 eqid BaseR=BaseR
33 31 32 mgpbas BaseR=BasemulGrpR
34 30 33 mhmf ℤRHomRpmSgnNSymGrpNMndHommulGrpRℤRHomRpmSgnN:BaseSymGrpNBaseR
35 29 34 syl φℤRHomRpmSgnN:BaseSymGrpNBaseR
36 35 ffvelcdmda φpBaseSymGrpNℤRHomRpmSgnNpBaseR
37 31 crngmgp RCRingmulGrpRCMnd
38 5 37 syl φmulGrpRCMnd
39 38 adantr φpBaseSymGrpNmulGrpRCMnd
40 27 adantr φpBaseSymGrpNNFin
41 2 32 3 matbas2i YBYBaseRN×N
42 elmapi YBaseRN×NY:N×NBaseR
43 7 41 42 3syl φY:N×NBaseR
44 43 ad2antrr φpBaseSymGrpNrNY:N×NBaseR
45 simpr φpBaseSymGrpNrNrN
46 eqid SymGrpN=SymGrpN
47 46 30 symgbasf pBaseSymGrpNp:NN
48 47 adantl φpBaseSymGrpNp:NN
49 48 ffvelcdmda φpBaseSymGrpNrNprN
50 44 45 49 fovcdmd φpBaseSymGrpNrNrYprBaseR
51 50 ralrimiva φpBaseSymGrpNrNrYprBaseR
52 33 39 40 51 gsummptcl φpBaseSymGrpNmulGrpRrNrYprBaseR
53 2 32 3 matbas2i ZBZBaseRN×N
54 elmapi ZBaseRN×NZ:N×NBaseR
55 8 53 54 3syl φZ:N×NBaseR
56 55 ad2antrr φpBaseSymGrpNrNZ:N×NBaseR
57 56 45 49 fovcdmd φpBaseSymGrpNrNrZprBaseR
58 57 ralrimiva φpBaseSymGrpNrNrZprBaseR
59 33 39 40 58 gsummptcl φpBaseSymGrpNmulGrpRrNrZprBaseR
60 eqid R=R
61 32 4 60 ringdi RRingℤRHomRpmSgnNpBaseRmulGrpRrNrYprBaseRmulGrpRrNrZprBaseRℤRHomRpmSgnNpRmulGrpRrNrYpr+˙mulGrpRrNrZpr=ℤRHomRpmSgnNpRmulGrpRrNrYpr+˙ℤRHomRpmSgnNpRmulGrpRrNrZpr
62 24 36 52 59 61 syl13anc φpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙mulGrpRrNrZpr=ℤRHomRpmSgnNpRmulGrpRrNrYpr+˙ℤRHomRpmSgnNpRmulGrpRrNrZpr
63 cmnmnd mulGrpRCMndmulGrpRMnd
64 39 63 syl φpBaseSymGrpNmulGrpRMnd
65 9 adantr φpBaseSymGrpNIN
66 43 adantr φpBaseSymGrpNY:N×NBaseR
67 48 65 ffvelcdmd φpBaseSymGrpNpIN
68 66 65 67 fovcdmd φpBaseSymGrpNIYpIBaseR
69 id r=Ir=I
70 fveq2 r=Ipr=pI
71 69 70 oveq12d r=IrYpr=IYpI
72 33 71 gsumsn mulGrpRMndINIYpIBaseRmulGrpRrIrYpr=IYpI
73 64 65 68 72 syl3anc φpBaseSymGrpNmulGrpRrIrYpr=IYpI
74 73 68 eqeltrd φpBaseSymGrpNmulGrpRrIrYprBaseR
75 55 adantr φpBaseSymGrpNZ:N×NBaseR
76 75 65 67 fovcdmd φpBaseSymGrpNIZpIBaseR
77 69 70 oveq12d r=IrZpr=IZpI
78 33 77 gsumsn mulGrpRMndINIZpIBaseRmulGrpRrIrZpr=IZpI
79 64 65 76 78 syl3anc φpBaseSymGrpNmulGrpRrIrZpr=IZpI
80 79 76 eqeltrd φpBaseSymGrpNmulGrpRrIrZprBaseR
81 difssd φpBaseSymGrpNNIN
82 40 81 ssfid φpBaseSymGrpNNIFin
83 eldifi rNIrN
84 2 32 3 matbas2i XBXBaseRN×N
85 elmapi XBaseRN×NX:N×NBaseR
86 6 84 85 3syl φX:N×NBaseR
87 86 ad2antrr φpBaseSymGrpNrNX:N×NBaseR
88 87 45 49 fovcdmd φpBaseSymGrpNrNrXprBaseR
89 83 88 sylan2 φpBaseSymGrpNrNIrXprBaseR
90 89 ralrimiva φpBaseSymGrpNrNIrXprBaseR
91 33 39 82 90 gsummptcl φpBaseSymGrpNmulGrpRrNIrXprBaseR
92 32 4 60 ringdir RRingmulGrpRrIrYprBaseRmulGrpRrIrZprBaseRmulGrpRrNIrXprBaseRmulGrpRrIrYpr+˙mulGrpRrIrZprRmulGrpRrNIrXpr=mulGrpRrIrYprRmulGrpRrNIrXpr+˙mulGrpRrIrZprRmulGrpRrNIrXpr
93 24 74 80 91 92 syl13anc φpBaseSymGrpNmulGrpRrIrYpr+˙mulGrpRrIrZprRmulGrpRrNIrXpr=mulGrpRrIrYprRmulGrpRrNIrXpr+˙mulGrpRrIrZprRmulGrpRrNIrXpr
94 31 60 mgpplusg R=+mulGrpR
95 disjdif INI=
96 95 a1i φpBaseSymGrpNINI=
97 9 snssd φIN
98 97 adantr φpBaseSymGrpNIN
99 undif ININI=N
100 98 99 sylib φpBaseSymGrpNINI=N
101 100 eqcomd φpBaseSymGrpNN=INI
102 33 94 39 40 88 96 101 gsummptfidmsplit φpBaseSymGrpNmulGrpRrNrXpr=mulGrpRrIrXprRmulGrpRrNIrXpr
103 10 adantr φpBaseSymGrpNXI×N=YI×N+˙fZI×N
104 103 oveqd φpBaseSymGrpNIXI×NpI=IYI×N+˙fZI×NpI
105 xpss1 INI×NN×N
106 98 105 syl φpBaseSymGrpNI×NN×N
107 66 106 fssresd φpBaseSymGrpNYI×N:I×NBaseR
108 107 ffnd φpBaseSymGrpNYI×NFnI×N
109 75 106 fssresd φpBaseSymGrpNZI×N:I×NBaseR
110 109 ffnd φpBaseSymGrpNZI×NFnI×N
111 snex IV
112 xpexg IVNFinI×NV
113 111 40 112 sylancr φpBaseSymGrpNI×NV
114 snidg INII
115 65 114 syl φpBaseSymGrpNII
116 115 67 opelxpd φpBaseSymGrpNIpII×N
117 fnfvof YI×NFnI×NZI×NFnI×NI×NVIpII×NYI×N+˙fZI×NIpI=YI×NIpI+˙ZI×NIpI
118 108 110 113 116 117 syl22anc φpBaseSymGrpNYI×N+˙fZI×NIpI=YI×NIpI+˙ZI×NIpI
119 df-ov IYI×N+˙fZI×NpI=YI×N+˙fZI×NIpI
120 df-ov IYI×NpI=YI×NIpI
121 df-ov IZI×NpI=ZI×NIpI
122 120 121 oveq12i IYI×NpI+˙IZI×NpI=YI×NIpI+˙ZI×NIpI
123 118 119 122 3eqtr4g φpBaseSymGrpNIYI×N+˙fZI×NpI=IYI×NpI+˙IZI×NpI
124 104 123 eqtrd φpBaseSymGrpNIXI×NpI=IYI×NpI+˙IZI×NpI
125 ovres IIpINIXI×NpI=IXpI
126 115 67 125 syl2anc φpBaseSymGrpNIXI×NpI=IXpI
127 ovres IIpINIYI×NpI=IYpI
128 115 67 127 syl2anc φpBaseSymGrpNIYI×NpI=IYpI
129 ovres IIpINIZI×NpI=IZpI
130 115 67 129 syl2anc φpBaseSymGrpNIZI×NpI=IZpI
131 128 130 oveq12d φpBaseSymGrpNIYI×NpI+˙IZI×NpI=IYpI+˙IZpI
132 124 126 131 3eqtr3d φpBaseSymGrpNIXpI=IYpI+˙IZpI
133 86 adantr φpBaseSymGrpNX:N×NBaseR
134 133 65 67 fovcdmd φpBaseSymGrpNIXpIBaseR
135 69 70 oveq12d r=IrXpr=IXpI
136 33 135 gsumsn mulGrpRMndINIXpIBaseRmulGrpRrIrXpr=IXpI
137 64 65 134 136 syl3anc φpBaseSymGrpNmulGrpRrIrXpr=IXpI
138 73 79 oveq12d φpBaseSymGrpNmulGrpRrIrYpr+˙mulGrpRrIrZpr=IYpI+˙IZpI
139 132 137 138 3eqtr4d φpBaseSymGrpNmulGrpRrIrXpr=mulGrpRrIrYpr+˙mulGrpRrIrZpr
140 139 oveq1d φpBaseSymGrpNmulGrpRrIrXprRmulGrpRrNIrXpr=mulGrpRrIrYpr+˙mulGrpRrIrZprRmulGrpRrNIrXpr
141 102 140 eqtrd φpBaseSymGrpNmulGrpRrNrXpr=mulGrpRrIrYpr+˙mulGrpRrIrZprRmulGrpRrNIrXpr
142 33 94 39 40 50 96 101 gsummptfidmsplit φpBaseSymGrpNmulGrpRrNrYpr=mulGrpRrIrYprRmulGrpRrNIrYpr
143 11 ad2antrr φpBaseSymGrpNrNIXNI×N=YNI×N
144 143 oveqd φpBaseSymGrpNrNIrXNI×Npr=rYNI×Npr
145 simpr φpBaseSymGrpNrNIrNI
146 83 49 sylan2 φpBaseSymGrpNrNIprN
147 ovres rNIprNrXNI×Npr=rXpr
148 145 146 147 syl2anc φpBaseSymGrpNrNIrXNI×Npr=rXpr
149 ovres rNIprNrYNI×Npr=rYpr
150 145 146 149 syl2anc φpBaseSymGrpNrNIrYNI×Npr=rYpr
151 144 148 150 3eqtr3rd φpBaseSymGrpNrNIrYpr=rXpr
152 151 mpteq2dva φpBaseSymGrpNrNIrYpr=rNIrXpr
153 152 oveq2d φpBaseSymGrpNmulGrpRrNIrYpr=mulGrpRrNIrXpr
154 153 oveq2d φpBaseSymGrpNmulGrpRrIrYprRmulGrpRrNIrYpr=mulGrpRrIrYprRmulGrpRrNIrXpr
155 142 154 eqtrd φpBaseSymGrpNmulGrpRrNrYpr=mulGrpRrIrYprRmulGrpRrNIrXpr
156 33 94 39 40 57 96 101 gsummptfidmsplit φpBaseSymGrpNmulGrpRrNrZpr=mulGrpRrIrZprRmulGrpRrNIrZpr
157 12 ad2antrr φpBaseSymGrpNrNIXNI×N=ZNI×N
158 157 oveqd φpBaseSymGrpNrNIrXNI×Npr=rZNI×Npr
159 ovres rNIprNrZNI×Npr=rZpr
160 145 146 159 syl2anc φpBaseSymGrpNrNIrZNI×Npr=rZpr
161 158 148 160 3eqtr3rd φpBaseSymGrpNrNIrZpr=rXpr
162 161 mpteq2dva φpBaseSymGrpNrNIrZpr=rNIrXpr
163 162 oveq2d φpBaseSymGrpNmulGrpRrNIrZpr=mulGrpRrNIrXpr
164 163 oveq2d φpBaseSymGrpNmulGrpRrIrZprRmulGrpRrNIrZpr=mulGrpRrIrZprRmulGrpRrNIrXpr
165 156 164 eqtrd φpBaseSymGrpNmulGrpRrNrZpr=mulGrpRrIrZprRmulGrpRrNIrXpr
166 155 165 oveq12d φpBaseSymGrpNmulGrpRrNrYpr+˙mulGrpRrNrZpr=mulGrpRrIrYprRmulGrpRrNIrXpr+˙mulGrpRrIrZprRmulGrpRrNIrXpr
167 93 141 166 3eqtr4rd φpBaseSymGrpNmulGrpRrNrYpr+˙mulGrpRrNrZpr=mulGrpRrNrXpr
168 167 oveq2d φpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙mulGrpRrNrZpr=ℤRHomRpmSgnNpRmulGrpRrNrXpr
169 62 168 eqtr3d φpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙ℤRHomRpmSgnNpRmulGrpRrNrZpr=ℤRHomRpmSgnNpRmulGrpRrNrXpr
170 169 mpteq2dva φpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙ℤRHomRpmSgnNpRmulGrpRrNrZpr=pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrXpr
171 21 170 eqtrid φpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙fpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr=pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrXpr
172 171 oveq2d φRpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙fpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrXpr
173 ringcmn RRingRCMnd
174 5 22 173 3syl φRCMnd
175 46 30 symgbasfi NFinBaseSymGrpNFin
176 27 175 syl φBaseSymGrpNFin
177 32 60 ringcl RRingℤRHomRpmSgnNpBaseRmulGrpRrNrYprBaseRℤRHomRpmSgnNpRmulGrpRrNrYprBaseR
178 24 36 52 177 syl3anc φpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYprBaseR
179 32 60 ringcl RRingℤRHomRpmSgnNpBaseRmulGrpRrNrZprBaseRℤRHomRpmSgnNpRmulGrpRrNrZprBaseR
180 24 36 59 179 syl3anc φpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZprBaseR
181 32 4 174 176 178 180 15 18 gsummptfidmadd2 φRpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙fpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr
182 172 181 eqtr3d φRpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrXpr=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr
183 eqid ℤRHomR=ℤRHomR
184 eqid pmSgnN=pmSgnN
185 1 2 3 30 183 184 60 31 mdetleib2 RCRingXBDX=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrXpr
186 5 6 185 syl2anc φDX=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrXpr
187 1 2 3 30 183 184 60 31 mdetleib2 RCRingYBDY=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr
188 5 7 187 syl2anc φDY=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr
189 1 2 3 30 183 184 60 31 mdetleib2 RCRingZBDZ=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr
190 5 8 189 syl2anc φDZ=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr
191 188 190 oveq12d φDY+˙DZ=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrYpr+˙RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRrNrZpr
192 182 186 191 3eqtr4d φDX=DY+˙DZ