Metamath Proof Explorer


Theorem mplind

Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015)

Ref Expression
Hypotheses mplind.sk K=BaseR
mplind.sv V=ImVarR
mplind.sy Y=ImPolyR
mplind.sp +˙=+Y
mplind.st ·˙=Y
mplind.sc C=algScY
mplind.sb B=BaseY
mplind.p φxHyHx+˙yH
mplind.t φxHyHx·˙yH
mplind.s φxKCxH
mplind.v φxIVxH
mplind.x φXB
mplind.i φIW
mplind.r φRCRing
Assertion mplind φXH

Proof

Step Hyp Ref Expression
1 mplind.sk K=BaseR
2 mplind.sv V=ImVarR
3 mplind.sy Y=ImPolyR
4 mplind.sp +˙=+Y
5 mplind.st ·˙=Y
6 mplind.sc C=algScY
7 mplind.sb B=BaseY
8 mplind.p φxHyHx+˙yH
9 mplind.t φxHyHx·˙yH
10 mplind.s φxKCxH
11 mplind.v φxIVxH
12 mplind.x φXB
13 mplind.i φIW
14 mplind.r φRCRing
15 eqid ImPwSerR=ImPwSerR
16 15 13 14 psrassa φImPwSerRAssAlg
17 inss2 HBB
18 crngring RCRingRRing
19 14 18 syl φRRing
20 15 3 7 13 19 mplsubrg φBSubRingImPwSerR
21 eqid BaseImPwSerR=BaseImPwSerR
22 21 subrgss BSubRingImPwSerRBBaseImPwSerR
23 20 22 syl φBBaseImPwSerR
24 17 23 sstrid φHBBaseImPwSerR
25 3 2 7 13 19 mvrf2 φV:IB
26 25 ffnd φVFnI
27 11 ralrimiva φxIVxH
28 fnfvrnss VFnIxIVxHranVH
29 26 27 28 syl2anc φranVH
30 25 frnd φranVB
31 29 30 ssind φranVHB
32 eqid AlgSpanImPwSerR=AlgSpanImPwSerR
33 32 21 aspss ImPwSerRAssAlgHBBaseImPwSerRranVHBAlgSpanImPwSerRranVAlgSpanImPwSerRHB
34 16 24 31 33 syl3anc φAlgSpanImPwSerRranVAlgSpanImPwSerRHB
35 3 15 2 32 13 14 mplbas2 φAlgSpanImPwSerRranV=BaseY
36 35 7 eqtr4di φAlgSpanImPwSerRranV=B
37 17 a1i φHBB
38 3 mplassa IWRCRingYAssAlg
39 13 14 38 syl2anc φYAssAlg
40 eqid ScalarY=ScalarY
41 6 40 asclrhm YAssAlgCScalarYRingHomY
42 39 41 syl φCScalarYRingHomY
43 eqid 1ScalarY=1ScalarY
44 eqid 1Y=1Y
45 43 44 rhm1 CScalarYRingHomYC1ScalarY=1Y
46 42 45 syl φC1ScalarY=1Y
47 fveq2 x=1ScalarYCx=C1ScalarY
48 47 eleq1d x=1ScalarYCxHC1ScalarYH
49 10 ralrimiva φxKCxH
50 3 13 14 mplsca φR=ScalarY
51 50 19 eqeltrrd φScalarYRing
52 eqid BaseScalarY=BaseScalarY
53 52 43 ringidcl ScalarYRing1ScalarYBaseScalarY
54 51 53 syl φ1ScalarYBaseScalarY
55 50 fveq2d φBaseR=BaseScalarY
56 1 55 eqtrid φK=BaseScalarY
57 54 56 eleqtrrd φ1ScalarYK
58 48 49 57 rspcdva φC1ScalarYH
59 46 58 eqeltrrd φ1YH
60 assaring YAssAlgYRing
61 39 60 syl φYRing
62 7 44 ringidcl YRing1YB
63 61 62 syl φ1YB
64 59 63 elind φ1YHB
65 64 ne0d φHB
66 elinel1 zHBzH
67 elinel1 wHBwH
68 66 67 anim12i zHBwHBzHwH
69 8 caovclg φzHwHz+˙wH
70 68 69 sylan2 φzHBwHBz+˙wH
71 assalmod YAssAlgYLMod
72 39 71 syl φYLMod
73 lmodgrp YLModYGrp
74 72 73 syl φYGrp
75 74 adantr φzHBwHBYGrp
76 simprl φzHBwHBzHB
77 76 elin2d φzHBwHBzB
78 simprr φzHBwHBwHB
79 78 elin2d φzHBwHBwB
80 7 4 grpcl YGrpzBwBz+˙wB
81 75 77 79 80 syl3anc φzHBwHBz+˙wB
82 70 81 elind φzHBwHBz+˙wHB
83 82 anassrs φzHBwHBz+˙wHB
84 83 ralrimiva φzHBwHBz+˙wHB
85 eqid invgY=invgY
86 61 adantr φzHBYRing
87 simpr φzHBzHB
88 87 elin2d φzHBzB
89 7 5 44 85 86 88 ringnegl φzHBinvgY1Y·˙z=invgYz
90 simpl φzHBφ
91 rhmghm CScalarYRingHomYCScalarYGrpHomY
92 42 91 syl φCScalarYGrpHomY
93 eqid invgScalarY=invgScalarY
94 52 93 85 ghminv CScalarYGrpHomY1ScalarYBaseScalarYCinvgScalarY1ScalarY=invgYC1ScalarY
95 92 54 94 syl2anc φCinvgScalarY1ScalarY=invgYC1ScalarY
96 46 fveq2d φinvgYC1ScalarY=invgY1Y
97 95 96 eqtrd φCinvgScalarY1ScalarY=invgY1Y
98 fveq2 x=invgScalarY1ScalarYCx=CinvgScalarY1ScalarY
99 98 eleq1d x=invgScalarY1ScalarYCxHCinvgScalarY1ScalarYH
100 ringgrp ScalarYRingScalarYGrp
101 51 100 syl φScalarYGrp
102 52 93 grpinvcl ScalarYGrp1ScalarYBaseScalarYinvgScalarY1ScalarYBaseScalarY
103 101 54 102 syl2anc φinvgScalarY1ScalarYBaseScalarY
104 103 56 eleqtrrd φinvgScalarY1ScalarYK
105 99 49 104 rspcdva φCinvgScalarY1ScalarYH
106 97 105 eqeltrrd φinvgY1YH
107 106 adantr φzHBinvgY1YH
108 87 elin1d φzHBzH
109 9 caovclg φinvgY1YHzHinvgY1Y·˙zH
110 90 107 108 109 syl12anc φzHBinvgY1Y·˙zH
111 89 110 eqeltrrd φzHBinvgYzH
112 74 adantr φzHBYGrp
113 7 85 grpinvcl YGrpzBinvgYzB
114 112 88 113 syl2anc φzHBinvgYzB
115 111 114 elind φzHBinvgYzHB
116 84 115 jca φzHBwHBz+˙wHBinvgYzHB
117 116 ralrimiva φzHBwHBz+˙wHBinvgYzHB
118 7 4 85 issubg2 YGrpHBSubGrpYHBBHBzHBwHBz+˙wHBinvgYzHB
119 74 118 syl φHBSubGrpYHBBHBzHBwHBz+˙wHBinvgYzHB
120 37 65 117 119 mpbir3and φHBSubGrpY
121 elinel1 xHBxH
122 elinel1 yHByH
123 121 122 anim12i xHByHBxHyH
124 123 9 sylan2 φxHByHBx·˙yH
125 61 adantr φxHByHBYRing
126 simprl φxHByHBxHB
127 126 elin2d φxHByHBxB
128 simprr φxHByHByHB
129 128 elin2d φxHByHByB
130 7 5 ringcl YRingxByBx·˙yB
131 125 127 129 130 syl3anc φxHByHBx·˙yB
132 124 131 elind φxHByHBx·˙yHB
133 132 ralrimivva φxHByHBx·˙yHB
134 7 44 5 issubrg2 YRingHBSubRingYHBSubGrpY1YHBxHByHBx·˙yHB
135 61 134 syl φHBSubRingYHBSubGrpY1YHBxHByHBx·˙yHB
136 120 64 133 135 mpbir3and φHBSubRingY
137 3 15 7 mplval2 Y=ImPwSerR𝑠B
138 137 subsubrg BSubRingImPwSerRHBSubRingYHBSubRingImPwSerRHBB
139 138 simprbda BSubRingImPwSerRHBSubRingYHBSubRingImPwSerR
140 20 136 139 syl2anc φHBSubRingImPwSerR
141 assalmod ImPwSerRAssAlgImPwSerRLMod
142 16 141 syl φImPwSerRLMod
143 15 3 7 13 19 mpllss φBLSubSpImPwSerR
144 39 adantr φzBaseScalarYwHBYAssAlg
145 simprl φzBaseScalarYwHBzBaseScalarY
146 simprr φzBaseScalarYwHBwHB
147 146 elin2d φzBaseScalarYwHBwB
148 eqid Y=Y
149 6 40 52 7 5 148 asclmul1 YAssAlgzBaseScalarYwBCz·˙w=zYw
150 144 145 147 149 syl3anc φzBaseScalarYwHBCz·˙w=zYw
151 fveq2 x=zCx=Cz
152 151 eleq1d x=zCxHCzH
153 49 adantr φzBaseScalarYwHBxKCxH
154 56 adantr φzBaseScalarYwHBK=BaseScalarY
155 145 154 eleqtrrd φzBaseScalarYwHBzK
156 152 153 155 rspcdva φzBaseScalarYwHBCzH
157 146 elin1d φzBaseScalarYwHBwH
158 156 157 jca φzBaseScalarYwHBCzHwH
159 9 caovclg φCzHwHCz·˙wH
160 158 159 syldan φzBaseScalarYwHBCz·˙wH
161 150 160 eqeltrrd φzBaseScalarYwHBzYwH
162 72 adantr φzBaseScalarYwHBYLMod
163 7 40 148 52 lmodvscl YLModzBaseScalarYwBzYwB
164 162 145 147 163 syl3anc φzBaseScalarYwHBzYwB
165 161 164 elind φzBaseScalarYwHBzYwHB
166 165 ralrimivva φzBaseScalarYwHBzYwHB
167 eqid LSubSpY=LSubSpY
168 40 52 7 148 167 islss4 YLModHBLSubSpYHBSubGrpYzBaseScalarYwHBzYwHB
169 72 168 syl φHBLSubSpYHBSubGrpYzBaseScalarYwHBzYwHB
170 120 166 169 mpbir2and φHBLSubSpY
171 eqid LSubSpImPwSerR=LSubSpImPwSerR
172 137 171 167 lsslss ImPwSerRLModBLSubSpImPwSerRHBLSubSpYHBLSubSpImPwSerRHBB
173 172 simprbda ImPwSerRLModBLSubSpImPwSerRHBLSubSpYHBLSubSpImPwSerR
174 142 143 170 173 syl21anc φHBLSubSpImPwSerR
175 32 21 171 aspid ImPwSerRAssAlgHBSubRingImPwSerRHBLSubSpImPwSerRAlgSpanImPwSerRHB=HB
176 16 140 174 175 syl3anc φAlgSpanImPwSerRHB=HB
177 34 36 176 3sstr3d φBHB
178 177 12 sseldd φXHB
179 178 elin1d φXH