Metamath Proof Explorer


Theorem mthmpps

Description: Given a theorem, there is an explicitly definable witnessing provable pre-statement for the provability of the theorem. (However, this pre-statement requires infinitely many disjoint variable conditions, which is sometimes inconvenient.) (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmpps.r R=mStRedT
mthmpps.j J=mPPStT
mthmpps.u U=mThmT
mthmpps.d D=mDVT
mthmpps.v V=mVarsT
mthmpps.z Z=VHA
mthmpps.m M=CDZ×Z
Assertion mthmpps TmFSCHAUMHAJRMHA=RCHA

Proof

Step Hyp Ref Expression
1 mthmpps.r R=mStRedT
2 mthmpps.j J=mPPStT
3 mthmpps.u U=mThmT
4 mthmpps.d D=mDVT
5 mthmpps.v V=mVarsT
6 mthmpps.z Z=VHA
7 mthmpps.m M=CDZ×Z
8 eqid mPreStT=mPreStT
9 3 8 mthmsta UmPreStT
10 simpr TmFSCHAUCHAU
11 9 10 sselid TmFSCHAUCHAmPreStT
12 eqid mExT=mExT
13 4 12 8 elmpst CHAmPreStTCDC-1=CHmExTHFinAmExT
14 11 13 sylib TmFSCHAUCDC-1=CHmExTHFinAmExT
15 14 simp1d TmFSCHAUCDC-1=C
16 15 simpld TmFSCHAUCD
17 difssd TmFSCHAUDZ×ZD
18 16 17 unssd TmFSCHAUCDZ×ZD
19 7 18 eqsstrid TmFSCHAUMD
20 15 simprd TmFSCHAUC-1=C
21 cnvdif DZ×Z-1=D-1Z×Z-1
22 cnvdif mVRT×mVRTI-1=mVRT×mVRT-1I-1
23 cnvxp mVRT×mVRT-1=mVRT×mVRT
24 cnvi I-1=I
25 23 24 difeq12i mVRT×mVRT-1I-1=mVRT×mVRTI
26 22 25 eqtri mVRT×mVRTI-1=mVRT×mVRTI
27 eqid mVRT=mVRT
28 27 4 mdvval D=mVRT×mVRTI
29 28 cnveqi D-1=mVRT×mVRTI-1
30 26 29 28 3eqtr4i D-1=D
31 cnvxp Z×Z-1=Z×Z
32 30 31 difeq12i D-1Z×Z-1=DZ×Z
33 21 32 eqtri DZ×Z-1=DZ×Z
34 33 a1i TmFSCHAUDZ×Z-1=DZ×Z
35 20 34 uneq12d TmFSCHAUC-1DZ×Z-1=CDZ×Z
36 7 cnveqi M-1=CDZ×Z-1
37 cnvun CDZ×Z-1=C-1DZ×Z-1
38 36 37 eqtri M-1=C-1DZ×Z-1
39 35 38 7 3eqtr4g TmFSCHAUM-1=M
40 19 39 jca TmFSCHAUMDM-1=M
41 14 simp2d TmFSCHAUHmExTHFin
42 14 simp3d TmFSCHAUAmExT
43 4 12 8 elmpst MHAmPreStTMDM-1=MHmExTHFinAmExT
44 40 41 42 43 syl3anbrc TmFSCHAUMHAmPreStT
45 1 2 3 elmthm CHAUxJRx=RCHA
46 10 45 sylib TmFSCHAUxJRx=RCHA
47 eqid mClsT=mClsT
48 simpll TmFSCHAUxJRx=RCHATmFS
49 19 adantr TmFSCHAUxJRx=RCHAMD
50 41 simpld TmFSCHAUHmExT
51 50 adantr TmFSCHAUxJRx=RCHAHmExT
52 8 2 mppspst JmPreStT
53 simprl TmFSCHAUxJRx=RCHAxJ
54 52 53 sselid TmFSCHAUxJRx=RCHAxmPreStT
55 8 mpst123 xmPreStTx=1st1stx2nd1stx2ndx
56 54 55 syl TmFSCHAUxJRx=RCHAx=1st1stx2nd1stx2ndx
57 56 fveq2d TmFSCHAUxJRx=RCHARx=R1st1stx2nd1stx2ndx
58 simprr TmFSCHAUxJRx=RCHARx=RCHA
59 57 58 eqtr3d TmFSCHAUxJRx=RCHAR1st1stx2nd1stx2ndx=RCHA
60 56 54 eqeltrrd TmFSCHAUxJRx=RCHA1st1stx2nd1stx2ndxmPreStT
61 eqid V2nd1stx2ndx=V2nd1stx2ndx
62 5 8 1 61 msrval 1st1stx2nd1stx2ndxmPreStTR1st1stx2nd1stx2ndx=1st1stxV2nd1stx2ndx×V2nd1stx2ndx2nd1stx2ndx
63 60 62 syl TmFSCHAUxJRx=RCHAR1st1stx2nd1stx2ndx=1st1stxV2nd1stx2ndx×V2nd1stx2ndx2nd1stx2ndx
64 5 8 1 6 msrval CHAmPreStTRCHA=CZ×ZHA
65 11 64 syl TmFSCHAURCHA=CZ×ZHA
66 65 adantr TmFSCHAUxJRx=RCHARCHA=CZ×ZHA
67 59 63 66 3eqtr3d TmFSCHAUxJRx=RCHA1st1stxV2nd1stx2ndx×V2nd1stx2ndx2nd1stx2ndx=CZ×ZHA
68 fvex 1st1stxV
69 68 inex1 1st1stxV2nd1stx2ndx×V2nd1stx2ndxV
70 fvex 2nd1stxV
71 fvex 2ndxV
72 69 70 71 otth 1st1stxV2nd1stx2ndx×V2nd1stx2ndx2nd1stx2ndx=CZ×ZHA1st1stxV2nd1stx2ndx×V2nd1stx2ndx=CZ×Z2nd1stx=H2ndx=A
73 67 72 sylib TmFSCHAUxJRx=RCHA1st1stxV2nd1stx2ndx×V2nd1stx2ndx=CZ×Z2nd1stx=H2ndx=A
74 73 simp1d TmFSCHAUxJRx=RCHA1st1stxV2nd1stx2ndx×V2nd1stx2ndx=CZ×Z
75 73 simp2d TmFSCHAUxJRx=RCHA2nd1stx=H
76 73 simp3d TmFSCHAUxJRx=RCHA2ndx=A
77 76 sneqd TmFSCHAUxJRx=RCHA2ndx=A
78 75 77 uneq12d TmFSCHAUxJRx=RCHA2nd1stx2ndx=HA
79 78 imaeq2d TmFSCHAUxJRx=RCHAV2nd1stx2ndx=VHA
80 79 unieqd TmFSCHAUxJRx=RCHAV2nd1stx2ndx=VHA
81 80 6 eqtr4di TmFSCHAUxJRx=RCHAV2nd1stx2ndx=Z
82 81 sqxpeqd TmFSCHAUxJRx=RCHAV2nd1stx2ndx×V2nd1stx2ndx=Z×Z
83 82 ineq2d TmFSCHAUxJRx=RCHA1st1stxV2nd1stx2ndx×V2nd1stx2ndx=1st1stxZ×Z
84 74 83 eqtr3d TmFSCHAUxJRx=RCHACZ×Z=1st1stxZ×Z
85 inss1 CZ×ZC
86 84 85 eqsstrrdi TmFSCHAUxJRx=RCHA1st1stxZ×ZC
87 eqidd TmFSCHAUxJRx=RCHA1st1stx=1st1stx
88 87 75 76 oteq123d TmFSCHAUxJRx=RCHA1st1stx2nd1stx2ndx=1st1stxHA
89 56 88 eqtrd TmFSCHAUxJRx=RCHAx=1st1stxHA
90 89 54 eqeltrrd TmFSCHAUxJRx=RCHA1st1stxHAmPreStT
91 4 12 8 elmpst 1st1stxHAmPreStT1st1stxD1st1stx-1=1st1stxHmExTHFinAmExT
92 91 simp1bi 1st1stxHAmPreStT1st1stxD1st1stx-1=1st1stx
93 92 simpld 1st1stxHAmPreStT1st1stxD
94 90 93 syl TmFSCHAUxJRx=RCHA1st1stxD
95 94 ssdifd TmFSCHAUxJRx=RCHA1st1stxZ×ZDZ×Z
96 unss12 1st1stxZ×ZC1st1stxZ×ZDZ×Z1st1stxZ×Z1st1stxZ×ZCDZ×Z
97 86 95 96 syl2anc TmFSCHAUxJRx=RCHA1st1stxZ×Z1st1stxZ×ZCDZ×Z
98 inundif 1st1stxZ×Z1st1stxZ×Z=1st1stx
99 98 eqcomi 1st1stx=1st1stxZ×Z1st1stxZ×Z
100 97 99 7 3sstr4g TmFSCHAUxJRx=RCHA1st1stxM
101 ssidd TmFSCHAUxJRx=RCHAHH
102 4 12 47 48 49 51 100 101 ss2mcls TmFSCHAUxJRx=RCHA1st1stxmClsTHMmClsTH
103 89 53 eqeltrrd TmFSCHAUxJRx=RCHA1st1stxHAJ
104 8 2 47 elmpps 1st1stxHAJ1st1stxHAmPreStTA1st1stxmClsTH
105 104 simprbi 1st1stxHAJA1st1stxmClsTH
106 103 105 syl TmFSCHAUxJRx=RCHAA1st1stxmClsTH
107 102 106 sseldd TmFSCHAUxJRx=RCHAAMmClsTH
108 46 107 rexlimddv TmFSCHAUAMmClsTH
109 8 2 47 elmpps MHAJMHAmPreStTAMmClsTH
110 44 108 109 sylanbrc TmFSCHAUMHAJ
111 7 ineq1i MZ×Z=CDZ×ZZ×Z
112 indir CDZ×ZZ×Z=CZ×ZDZ×ZZ×Z
113 disjdifr DZ×ZZ×Z=
114 0ss CZ×Z
115 113 114 eqsstri DZ×ZZ×ZCZ×Z
116 ssequn2 DZ×ZZ×ZCZ×ZCZ×ZDZ×ZZ×Z=CZ×Z
117 115 116 mpbi CZ×ZDZ×ZZ×Z=CZ×Z
118 111 112 117 3eqtri MZ×Z=CZ×Z
119 118 a1i TmFSCHAUMZ×Z=CZ×Z
120 119 oteq1d TmFSCHAUMZ×ZHA=CZ×ZHA
121 5 8 1 6 msrval MHAmPreStTRMHA=MZ×ZHA
122 44 121 syl TmFSCHAURMHA=MZ×ZHA
123 120 122 65 3eqtr4d TmFSCHAURMHA=RCHA
124 110 123 jca TmFSCHAUMHAJRMHA=RCHA
125 124 ex TmFSCHAUMHAJRMHA=RCHA
126 1 2 3 mthmi MHAJRMHA=RCHACHAU
127 125 126 impbid1 TmFSCHAUMHAJRMHA=RCHA