Metamath Proof Explorer


Theorem mzpcompact2lem

Description: Lemma for mzpcompact2 . (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Hypothesis mzpcompact2lem.i BV
Assertion mzpcompact2lem AmzPolyBaFinbmzPolyaaBA=cBbca

Proof

Step Hyp Ref Expression
1 mzpcompact2lem.i BV
2 tru
3 0fin Fin
4 0ex V
5 mzpconst Vf×fmzPoly
6 4 5 mpan f×fmzPoly
7 0ss B
8 7 a1i fB
9 fconstmpt B×f=dBf
10 simpr fdBdB
11 elmapssres dBBd
12 10 7 11 sylancl fdBd
13 vex fV
14 13 fvconst2 d×fd=f
15 12 14 syl fdB×fd=f
16 15 mpteq2dva fdB×fd=dBf
17 9 16 eqtr4id fB×f=dB×fd
18 fveq1 b=×fbd=×fd
19 18 mpteq2dv b=×fdBbd=dB×fd
20 19 eqeq2d b=×fB×f=dBbdB×f=dB×fd
21 20 anbi2d b=×fBB×f=dBbdBB×f=dB×fd
22 21 rspcev ×fmzPolyBB×f=dB×fdbmzPolyBB×f=dBbd
23 6 8 17 22 syl12anc fbmzPolyBB×f=dBbd
24 fveq2 a=mzPolya=mzPoly
25 sseq1 a=aBB
26 reseq2 a=da=d
27 26 fveq2d a=bda=bd
28 27 mpteq2dv a=dBbda=dBbd
29 28 eqeq2d a=B×f=dBbdaB×f=dBbd
30 25 29 anbi12d a=aBB×f=dBbdaBB×f=dBbd
31 24 30 rexeqbidv a=bmzPolyaaBB×f=dBbdabmzPolyBB×f=dBbd
32 31 rspcev FinbmzPolyBB×f=dBbdaFinbmzPolyaaBB×f=dBbda
33 3 23 32 sylancr faFinbmzPolyaaBB×f=dBbda
34 33 adantl faFinbmzPolyaaBB×f=dBbda
35 snfi fFin
36 vsnex fV
37 vsnid ff
38 mzpproj fVffgfgfmzPolyf
39 36 37 38 mp2an gfgfmzPolyf
40 39 a1i fBgfgfmzPolyf
41 snssi fBfB
42 fveq1 g=dgf=df
43 42 cbvmptv gBgf=dBdf
44 simpr fBdBdB
45 simpl fBdBfB
46 45 snssd fBdBfB
47 elmapssres dBfBdff
48 44 46 47 syl2anc fBdBdff
49 fveq1 g=dfgf=dff
50 eqid gfgf=gfgf
51 fvex dffV
52 49 50 51 fvmpt dffgfgfdf=dff
53 48 52 syl fBdBgfgfdf=dff
54 fvres ffdff=df
55 37 54 ax-mp dff=df
56 53 55 eqtr2di fBdBdf=gfgfdf
57 56 mpteq2dva fBdBdf=dBgfgfdf
58 43 57 eqtrid fBgBgf=dBgfgfdf
59 fveq1 b=gfgfbdf=gfgfdf
60 59 mpteq2dv b=gfgfdBbdf=dBgfgfdf
61 60 eqeq2d b=gfgfgBgf=dBbdfgBgf=dBgfgfdf
62 61 anbi2d b=gfgffBgBgf=dBbdffBgBgf=dBgfgfdf
63 62 rspcev gfgfmzPolyffBgBgf=dBgfgfdfbmzPolyffBgBgf=dBbdf
64 40 41 58 63 syl12anc fBbmzPolyffBgBgf=dBbdf
65 fveq2 a=fmzPolya=mzPolyf
66 sseq1 a=faBfB
67 reseq2 a=fda=df
68 67 fveq2d a=fbda=bdf
69 68 mpteq2dv a=fdBbda=dBbdf
70 69 eqeq2d a=fgBgf=dBbdagBgf=dBbdf
71 66 70 anbi12d a=faBgBgf=dBbdafBgBgf=dBbdf
72 65 71 rexeqbidv a=fbmzPolyaaBgBgf=dBbdabmzPolyffBgBgf=dBbdf
73 72 rspcev fFinbmzPolyffBgBgf=dBbdfaFinbmzPolyaaBgBgf=dBbda
74 35 64 73 sylancr fBaFinbmzPolyaaBgBgf=dBbda
75 74 adantl fBaFinbmzPolyaaBgBgf=dBbda
76 simplll hFinimzPolyhhBjFinkmzPolyjjBhFin
77 simprll hFinimzPolyhhBjFinkmzPolyjjBjFin
78 unfi hFinjFinhjFin
79 76 77 78 syl2anc hFinimzPolyhhBjFinkmzPolyjjBhjFin
80 vex hV
81 vex jV
82 80 81 unex hjV
83 82 a1i hFinimzPolyhhBjFinkmzPolyjjBhjV
84 ssun1 hhj
85 84 a1i hFinimzPolyhhBjFinkmzPolyjjBhhj
86 simpllr hFinimzPolyhhBjFinkmzPolyjjBimzPolyh
87 mzpresrename hjVhhjimzPolyhlhjilhmzPolyhj
88 83 85 86 87 syl3anc hFinimzPolyhhBjFinkmzPolyjjBlhjilhmzPolyhj
89 ssun2 jhj
90 89 a1i hFinimzPolyhhBjFinkmzPolyjjBjhj
91 simprlr hFinimzPolyhhBjFinkmzPolyjjBkmzPolyj
92 mzpresrename hjVjhjkmzPolyjlhjkljmzPolyhj
93 83 90 91 92 syl3anc hFinimzPolyhhBjFinkmzPolyjjBlhjkljmzPolyhj
94 mzpaddmpt lhjilhmzPolyhjlhjkljmzPolyhjlhjilh+kljmzPolyhj
95 88 93 94 syl2anc hFinimzPolyhhBjFinkmzPolyjjBlhjilh+kljmzPolyhj
96 simplr hFinimzPolyhhBjFinkmzPolyjjBhB
97 simprr hFinimzPolyhhBjFinkmzPolyjjBjB
98 96 97 unssd hFinimzPolyhhBjFinkmzPolyjjBhjB
99 ovex BV
100 99 a1i hFinimzPolyhhBjFinkmzPolyjjBBV
101 1 a1i hFinimzPolyhhBjFinkmzPolyjjBBV
102 mzpresrename BVhBimzPolyhdBidhmzPolyB
103 101 96 86 102 syl3anc hFinimzPolyhhBjFinkmzPolyjjBdBidhmzPolyB
104 mzpf dBidhmzPolyBdBidh:B
105 ffn dBidh:BdBidhFnB
106 103 104 105 3syl hFinimzPolyhhBjFinkmzPolyjjBdBidhFnB
107 mzpresrename BVjBkmzPolyjdBkdjmzPolyB
108 101 97 91 107 syl3anc hFinimzPolyhhBjFinkmzPolyjjBdBkdjmzPolyB
109 mzpf dBkdjmzPolyBdBkdj:B
110 ffn dBkdj:BdBkdjFnB
111 108 109 110 3syl hFinimzPolyhhBjFinkmzPolyjjBdBkdjFnB
112 ofmpteq BVdBidhFnBdBkdjFnBdBidh+fdBkdj=dBidh+kdj
113 100 106 111 112 syl3anc hFinimzPolyhhBjFinkmzPolyjjBdBidh+fdBkdj=dBidh+kdj
114 elmapi dBd:B
115 fssres d:BhjBdhj:hj
116 114 98 115 syl2anr hFinimzPolyhhBjFinkmzPolyjjBdBdhj:hj
117 zex V
118 117 82 elmap dhjhjdhj:hj
119 116 118 sylibr hFinimzPolyhhBjFinkmzPolyjjBdBdhjhj
120 reseq1 l=dhjlh=dhjh
121 120 fveq2d l=dhjilh=idhjh
122 reseq1 l=dhjlj=dhjj
123 122 fveq2d l=dhjklj=kdhjj
124 121 123 oveq12d l=dhjilh+klj=idhjh+kdhjj
125 eqid lhjilh+klj=lhjilh+klj
126 ovex idhjh+kdhjjV
127 124 125 126 fvmpt dhjhjlhjilh+kljdhj=idhjh+kdhjj
128 119 127 syl hFinimzPolyhhBjFinkmzPolyjjBdBlhjilh+kljdhj=idhjh+kdhjj
129 resabs1 hhjdhjh=dh
130 84 129 ax-mp dhjh=dh
131 130 fveq2i idhjh=idh
132 resabs1 jhjdhjj=dj
133 89 132 ax-mp dhjj=dj
134 133 fveq2i kdhjj=kdj
135 131 134 oveq12i idhjh+kdhjj=idh+kdj
136 128 135 eqtr2di hFinimzPolyhhBjFinkmzPolyjjBdBidh+kdj=lhjilh+kljdhj
137 136 mpteq2dva hFinimzPolyhhBjFinkmzPolyjjBdBidh+kdj=dBlhjilh+kljdhj
138 113 137 eqtrd hFinimzPolyhhBjFinkmzPolyjjBdBidh+fdBkdj=dBlhjilh+kljdhj
139 fveq1 b=lhjilh+kljbdhj=lhjilh+kljdhj
140 139 mpteq2dv b=lhjilh+kljdBbdhj=dBlhjilh+kljdhj
141 140 eqeq2d b=lhjilh+kljdBidh+fdBkdj=dBbdhjdBidh+fdBkdj=dBlhjilh+kljdhj
142 141 anbi2d b=lhjilh+kljhjBdBidh+fdBkdj=dBbdhjhjBdBidh+fdBkdj=dBlhjilh+kljdhj
143 142 rspcev lhjilh+kljmzPolyhjhjBdBidh+fdBkdj=dBlhjilh+kljdhjbmzPolyhjhjBdBidh+fdBkdj=dBbdhj
144 95 98 138 143 syl12anc hFinimzPolyhhBjFinkmzPolyjjBbmzPolyhjhjBdBidh+fdBkdj=dBbdhj
145 mzpmulmpt lhjilhmzPolyhjlhjkljmzPolyhjlhjilhkljmzPolyhj
146 88 93 145 syl2anc hFinimzPolyhhBjFinkmzPolyjjBlhjilhkljmzPolyhj
147 ofmpteq BVdBidhFnBdBkdjFnBdBidh×fdBkdj=dBidhkdj
148 100 106 111 147 syl3anc hFinimzPolyhhBjFinkmzPolyjjBdBidh×fdBkdj=dBidhkdj
149 121 123 oveq12d l=dhjilhklj=idhjhkdhjj
150 eqid lhjilhklj=lhjilhklj
151 ovex idhjhkdhjjV
152 149 150 151 fvmpt dhjhjlhjilhkljdhj=idhjhkdhjj
153 119 152 syl hFinimzPolyhhBjFinkmzPolyjjBdBlhjilhkljdhj=idhjhkdhjj
154 131 134 oveq12i idhjhkdhjj=idhkdj
155 153 154 eqtr2di hFinimzPolyhhBjFinkmzPolyjjBdBidhkdj=lhjilhkljdhj
156 155 mpteq2dva hFinimzPolyhhBjFinkmzPolyjjBdBidhkdj=dBlhjilhkljdhj
157 148 156 eqtrd hFinimzPolyhhBjFinkmzPolyjjBdBidh×fdBkdj=dBlhjilhkljdhj
158 fveq1 b=lhjilhkljbdhj=lhjilhkljdhj
159 158 mpteq2dv b=lhjilhkljdBbdhj=dBlhjilhkljdhj
160 159 eqeq2d b=lhjilhkljdBidh×fdBkdj=dBbdhjdBidh×fdBkdj=dBlhjilhkljdhj
161 160 anbi2d b=lhjilhkljhjBdBidh×fdBkdj=dBbdhjhjBdBidh×fdBkdj=dBlhjilhkljdhj
162 161 rspcev lhjilhkljmzPolyhjhjBdBidh×fdBkdj=dBlhjilhkljdhjbmzPolyhjhjBdBidh×fdBkdj=dBbdhj
163 146 98 157 162 syl12anc hFinimzPolyhhBjFinkmzPolyjjBbmzPolyhjhjBdBidh×fdBkdj=dBbdhj
164 fveq2 a=hjmzPolya=mzPolyhj
165 sseq1 a=hjaBhjB
166 reseq2 a=hjda=dhj
167 166 fveq2d a=hjbda=bdhj
168 167 mpteq2dv a=hjdBbda=dBbdhj
169 168 eqeq2d a=hjdBidh+fdBkdj=dBbdadBidh+fdBkdj=dBbdhj
170 165 169 anbi12d a=hjaBdBidh+fdBkdj=dBbdahjBdBidh+fdBkdj=dBbdhj
171 164 170 rexeqbidv a=hjbmzPolyaaBdBidh+fdBkdj=dBbdabmzPolyhjhjBdBidh+fdBkdj=dBbdhj
172 168 eqeq2d a=hjdBidh×fdBkdj=dBbdadBidh×fdBkdj=dBbdhj
173 165 172 anbi12d a=hjaBdBidh×fdBkdj=dBbdahjBdBidh×fdBkdj=dBbdhj
174 164 173 rexeqbidv a=hjbmzPolyaaBdBidh×fdBkdj=dBbdabmzPolyhjhjBdBidh×fdBkdj=dBbdhj
175 171 174 anbi12d a=hjbmzPolyaaBdBidh+fdBkdj=dBbdabmzPolyaaBdBidh×fdBkdj=dBbdabmzPolyhjhjBdBidh+fdBkdj=dBbdhjbmzPolyhjhjBdBidh×fdBkdj=dBbdhj
176 175 rspcev hjFinbmzPolyhjhjBdBidh+fdBkdj=dBbdhjbmzPolyhjhjBdBidh×fdBkdj=dBbdhjaFinbmzPolyaaBdBidh+fdBkdj=dBbdabmzPolyaaBdBidh×fdBkdj=dBbda
177 79 144 163 176 syl12anc hFinimzPolyhhBjFinkmzPolyjjBaFinbmzPolyaaBdBidh+fdBkdj=dBbdabmzPolyaaBdBidh×fdBkdj=dBbda
178 177 adantlrr hFinimzPolyhhBf=dBidhjFinkmzPolyjjBaFinbmzPolyaaBdBidh+fdBkdj=dBbdabmzPolyaaBdBidh×fdBkdj=dBbda
179 178 adantrrr hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBdBidh+fdBkdj=dBbdabmzPolyaaBdBidh×fdBkdj=dBbda
180 simplrr hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjf=dBidh
181 simprrr hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjg=dBkdj
182 180 181 oveq12d hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjf+fg=dBidh+fdBkdj
183 182 eqeq1d hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjf+fg=dBbdadBidh+fdBkdj=dBbda
184 183 anbi2d hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjaBf+fg=dBbdaaBdBidh+fdBkdj=dBbda
185 184 rexbidv hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjbmzPolyaaBf+fg=dBbdabmzPolyaaBdBidh+fdBkdj=dBbda
186 180 181 oveq12d hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjf×fg=dBidh×fdBkdj
187 186 eqeq1d hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjf×fg=dBbdadBidh×fdBkdj=dBbda
188 187 anbi2d hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjaBf×fg=dBbdaaBdBidh×fdBkdj=dBbda
189 188 rexbidv hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjbmzPolyaaBf×fg=dBbdabmzPolyaaBdBidh×fdBkdj=dBbda
190 185 189 anbi12d hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjbmzPolyaaBf+fg=dBbdabmzPolyaaBf×fg=dBbdabmzPolyaaBdBidh+fdBkdj=dBbdabmzPolyaaBdBidh×fdBkdj=dBbda
191 190 rexbidv hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf+fg=dBbdabmzPolyaaBf×fg=dBbdaaFinbmzPolyaaBdBidh+fdBkdj=dBbdabmzPolyaaBdBidh×fdBkdj=dBbda
192 179 191 mpbird hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf+fg=dBbdabmzPolyaaBf×fg=dBbda
193 r19.40 aFinbmzPolyaaBf+fg=dBbdabmzPolyaaBf×fg=dBbdaaFinbmzPolyaaBf+fg=dBbdaaFinbmzPolyaaBf×fg=dBbda
194 192 193 syl hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf+fg=dBbdaaFinbmzPolyaaBf×fg=dBbda
195 194 exp32 hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf+fg=dBbdaaFinbmzPolyaaBf×fg=dBbda
196 195 rexlimdvv hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf+fg=dBbdaaFinbmzPolyaaBf×fg=dBbda
197 196 ex hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf+fg=dBbdaaFinbmzPolyaaBf×fg=dBbda
198 197 rexlimivv hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf+fg=dBbdaaFinbmzPolyaaBf×fg=dBbda
199 198 imp hFinimzPolyhhBf=dBidhjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf+fg=dBbdaaFinbmzPolyaaBf×fg=dBbda
200 199 ad2ant2l f:BhFinimzPolyhhBf=dBidhg:BjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf+fg=dBbdaaFinbmzPolyaaBf×fg=dBbda
201 200 3adant1 f:BhFinimzPolyhhBf=dBidhg:BjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf+fg=dBbdaaFinbmzPolyaaBf×fg=dBbda
202 201 simpld f:BhFinimzPolyhhBf=dBidhg:BjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf+fg=dBbda
203 201 simprd f:BhFinimzPolyhhBf=dBidhg:BjFinkmzPolyjjBg=dBkdjaFinbmzPolyaaBf×fg=dBbda
204 eqeq1 e=B×fe=dBbdaB×f=dBbda
205 204 anbi2d e=B×faBe=dBbdaaBB×f=dBbda
206 205 2rexbidv e=B×faFinbmzPolyaaBe=dBbdaaFinbmzPolyaaBB×f=dBbda
207 eqeq1 e=gBgfe=dBbdagBgf=dBbda
208 207 anbi2d e=gBgfaBe=dBbdaaBgBgf=dBbda
209 208 2rexbidv e=gBgfaFinbmzPolyaaBe=dBbdaaFinbmzPolyaaBgBgf=dBbda
210 eqeq1 e=fe=dBbdaf=dBbda
211 210 anbi2d e=faBe=dBbdaaBf=dBbda
212 211 2rexbidv e=faFinbmzPolyaaBe=dBbdaaFinbmzPolyaaBf=dBbda
213 fveq2 a=hmzPolya=mzPolyh
214 sseq1 a=haBhB
215 reseq2 a=hda=dh
216 215 fveq2d a=hbda=bdh
217 216 mpteq2dv a=hdBbda=dBbdh
218 217 eqeq2d a=hf=dBbdaf=dBbdh
219 214 218 anbi12d a=haBf=dBbdahBf=dBbdh
220 213 219 rexeqbidv a=hbmzPolyaaBf=dBbdabmzPolyhhBf=dBbdh
221 fveq1 b=ibdh=idh
222 221 mpteq2dv b=idBbdh=dBidh
223 222 eqeq2d b=if=dBbdhf=dBidh
224 223 anbi2d b=ihBf=dBbdhhBf=dBidh
225 224 cbvrexvw bmzPolyhhBf=dBbdhimzPolyhhBf=dBidh
226 220 225 bitrdi a=hbmzPolyaaBf=dBbdaimzPolyhhBf=dBidh
227 226 cbvrexvw aFinbmzPolyaaBf=dBbdahFinimzPolyhhBf=dBidh
228 212 227 bitrdi e=faFinbmzPolyaaBe=dBbdahFinimzPolyhhBf=dBidh
229 eqeq1 e=ge=dBbdag=dBbda
230 229 anbi2d e=gaBe=dBbdaaBg=dBbda
231 230 2rexbidv e=gaFinbmzPolyaaBe=dBbdaaFinbmzPolyaaBg=dBbda
232 fveq2 a=jmzPolya=mzPolyj
233 sseq1 a=jaBjB
234 reseq2 a=jda=dj
235 234 fveq2d a=jbda=bdj
236 235 mpteq2dv a=jdBbda=dBbdj
237 236 eqeq2d a=jg=dBbdag=dBbdj
238 233 237 anbi12d a=jaBg=dBbdajBg=dBbdj
239 232 238 rexeqbidv a=jbmzPolyaaBg=dBbdabmzPolyjjBg=dBbdj
240 fveq1 b=kbdj=kdj
241 240 mpteq2dv b=kdBbdj=dBkdj
242 241 eqeq2d b=kg=dBbdjg=dBkdj
243 242 anbi2d b=kjBg=dBbdjjBg=dBkdj
244 243 cbvrexvw bmzPolyjjBg=dBbdjkmzPolyjjBg=dBkdj
245 239 244 bitrdi a=jbmzPolyaaBg=dBbdakmzPolyjjBg=dBkdj
246 245 cbvrexvw aFinbmzPolyaaBg=dBbdajFinkmzPolyjjBg=dBkdj
247 231 246 bitrdi e=gaFinbmzPolyaaBe=dBbdajFinkmzPolyjjBg=dBkdj
248 eqeq1 e=f+fge=dBbdaf+fg=dBbda
249 248 anbi2d e=f+fgaBe=dBbdaaBf+fg=dBbda
250 249 2rexbidv e=f+fgaFinbmzPolyaaBe=dBbdaaFinbmzPolyaaBf+fg=dBbda
251 eqeq1 e=f×fge=dBbdaf×fg=dBbda
252 251 anbi2d e=f×fgaBe=dBbdaaBf×fg=dBbda
253 252 2rexbidv e=f×fgaFinbmzPolyaaBe=dBbdaaFinbmzPolyaaBf×fg=dBbda
254 eqeq1 e=Ae=dBbdaA=dBbda
255 254 anbi2d e=AaBe=dBbdaaBA=dBbda
256 255 2rexbidv e=AaFinbmzPolyaaBe=dBbdaaFinbmzPolyaaBA=dBbda
257 34 75 202 203 206 209 228 247 250 253 256 mzpindd AmzPolyBaFinbmzPolyaaBA=dBbda
258 2 257 mpan AmzPolyBaFinbmzPolyaaBA=dBbda
259 reseq1 d=cda=ca
260 259 fveq2d d=cbda=bca
261 260 cbvmptv dBbda=cBbca
262 261 eqeq2i A=dBbdaA=cBbca
263 262 anbi2i aBA=dBbdaaBA=cBbca
264 263 2rexbii aFinbmzPolyaaBA=dBbdaaFinbmzPolyaaBA=cBbca
265 258 264 sylib AmzPolyBaFinbmzPolyaaBA=cBbca