Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Multivariate polynomials over the integers
mzpcompact2lem
Next ⟩
mzpcompact2
Metamath Proof Explorer
Ascii
Unicode
Theorem
mzpcompact2lem
Description:
Lemma for
mzpcompact2
.
(Contributed by
Stefan O'Rear
, 9-Oct-2014)
Ref
Expression
Hypothesis
mzpcompact2lem.i
⊢
B
∈
V
Assertion
mzpcompact2lem
⊢
A
∈
mzPoly
B
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
A
=
c
∈
ℤ
B
⟼
b
c
↾
a
Proof
Step
Hyp
Ref
Expression
1
mzpcompact2lem.i
⊢
B
∈
V
2
tru
⊢
⊤
3
0fin
⊢
∅
∈
Fin
4
0ex
⊢
∅
∈
V
5
mzpconst
⊢
∅
∈
V
∧
f
∈
ℤ
→
ℤ
∅
×
f
∈
mzPoly
∅
6
4
5
mpan
⊢
f
∈
ℤ
→
ℤ
∅
×
f
∈
mzPoly
∅
7
0ss
⊢
∅
⊆
B
8
7
a1i
⊢
f
∈
ℤ
→
∅
⊆
B
9
fconstmpt
⊢
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
f
10
simpr
⊢
f
∈
ℤ
∧
d
∈
ℤ
B
→
d
∈
ℤ
B
11
elmapssres
⊢
d
∈
ℤ
B
∧
∅
⊆
B
→
d
↾
∅
∈
ℤ
∅
12
10
7
11
sylancl
⊢
f
∈
ℤ
∧
d
∈
ℤ
B
→
d
↾
∅
∈
ℤ
∅
13
vex
⊢
f
∈
V
14
13
fvconst2
⊢
d
↾
∅
∈
ℤ
∅
→
ℤ
∅
×
f
d
↾
∅
=
f
15
12
14
syl
⊢
f
∈
ℤ
∧
d
∈
ℤ
B
→
ℤ
∅
×
f
d
↾
∅
=
f
16
15
mpteq2dva
⊢
f
∈
ℤ
→
d
∈
ℤ
B
⟼
ℤ
∅
×
f
d
↾
∅
=
d
∈
ℤ
B
⟼
f
17
9
16
eqtr4id
⊢
f
∈
ℤ
→
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
ℤ
∅
×
f
d
↾
∅
18
fveq1
⊢
b
=
ℤ
∅
×
f
→
b
d
↾
∅
=
ℤ
∅
×
f
d
↾
∅
19
18
mpteq2dv
⊢
b
=
ℤ
∅
×
f
→
d
∈
ℤ
B
⟼
b
d
↾
∅
=
d
∈
ℤ
B
⟼
ℤ
∅
×
f
d
↾
∅
20
19
eqeq2d
⊢
b
=
ℤ
∅
×
f
→
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
∅
↔
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
ℤ
∅
×
f
d
↾
∅
21
20
anbi2d
⊢
b
=
ℤ
∅
×
f
→
∅
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
∅
↔
∅
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
ℤ
∅
×
f
d
↾
∅
22
21
rspcev
⊢
ℤ
∅
×
f
∈
mzPoly
∅
∧
∅
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
ℤ
∅
×
f
d
↾
∅
→
∃
b
∈
mzPoly
∅
∅
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
∅
23
6
8
17
22
syl12anc
⊢
f
∈
ℤ
→
∃
b
∈
mzPoly
∅
∅
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
∅
24
fveq2
⊢
a
=
∅
→
mzPoly
a
=
mzPoly
∅
25
sseq1
⊢
a
=
∅
→
a
⊆
B
↔
∅
⊆
B
26
reseq2
⊢
a
=
∅
→
d
↾
a
=
d
↾
∅
27
26
fveq2d
⊢
a
=
∅
→
b
d
↾
a
=
b
d
↾
∅
28
27
mpteq2dv
⊢
a
=
∅
→
d
∈
ℤ
B
⟼
b
d
↾
a
=
d
∈
ℤ
B
⟼
b
d
↾
∅
29
28
eqeq2d
⊢
a
=
∅
→
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
∅
30
25
29
anbi12d
⊢
a
=
∅
→
a
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∅
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
∅
31
24
30
rexeqbidv
⊢
a
=
∅
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
b
∈
mzPoly
∅
∅
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
∅
32
31
rspcev
⊢
∅
∈
Fin
∧
∃
b
∈
mzPoly
∅
∅
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
∅
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
33
3
23
32
sylancr
⊢
f
∈
ℤ
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
34
33
adantl
⊢
⊤
∧
f
∈
ℤ
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
35
snfi
⊢
f
∈
Fin
36
vsnex
⊢
f
∈
V
37
vsnid
⊢
f
∈
f
38
mzpproj
⊢
f
∈
V
∧
f
∈
f
→
g
∈
ℤ
f
⟼
g
f
∈
mzPoly
f
39
36
37
38
mp2an
⊢
g
∈
ℤ
f
⟼
g
f
∈
mzPoly
f
40
39
a1i
⊢
f
∈
B
→
g
∈
ℤ
f
⟼
g
f
∈
mzPoly
f
41
snssi
⊢
f
∈
B
→
f
⊆
B
42
fveq1
⊢
g
=
d
→
g
f
=
d
f
43
42
cbvmptv
⊢
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
d
f
44
simpr
⊢
f
∈
B
∧
d
∈
ℤ
B
→
d
∈
ℤ
B
45
simpl
⊢
f
∈
B
∧
d
∈
ℤ
B
→
f
∈
B
46
45
snssd
⊢
f
∈
B
∧
d
∈
ℤ
B
→
f
⊆
B
47
elmapssres
⊢
d
∈
ℤ
B
∧
f
⊆
B
→
d
↾
f
∈
ℤ
f
48
44
46
47
syl2anc
⊢
f
∈
B
∧
d
∈
ℤ
B
→
d
↾
f
∈
ℤ
f
49
fveq1
⊢
g
=
d
↾
f
→
g
f
=
d
↾
f
f
50
eqid
⊢
g
∈
ℤ
f
⟼
g
f
=
g
∈
ℤ
f
⟼
g
f
51
fvex
⊢
d
↾
f
f
∈
V
52
49
50
51
fvmpt
⊢
d
↾
f
∈
ℤ
f
→
g
∈
ℤ
f
⟼
g
f
d
↾
f
=
d
↾
f
f
53
48
52
syl
⊢
f
∈
B
∧
d
∈
ℤ
B
→
g
∈
ℤ
f
⟼
g
f
d
↾
f
=
d
↾
f
f
54
fvres
⊢
f
∈
f
→
d
↾
f
f
=
d
f
55
37
54
ax-mp
⊢
d
↾
f
f
=
d
f
56
53
55
eqtr2di
⊢
f
∈
B
∧
d
∈
ℤ
B
→
d
f
=
g
∈
ℤ
f
⟼
g
f
d
↾
f
57
56
mpteq2dva
⊢
f
∈
B
→
d
∈
ℤ
B
⟼
d
f
=
d
∈
ℤ
B
⟼
g
∈
ℤ
f
⟼
g
f
d
↾
f
58
43
57
eqtrid
⊢
f
∈
B
→
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
g
∈
ℤ
f
⟼
g
f
d
↾
f
59
fveq1
⊢
b
=
g
∈
ℤ
f
⟼
g
f
→
b
d
↾
f
=
g
∈
ℤ
f
⟼
g
f
d
↾
f
60
59
mpteq2dv
⊢
b
=
g
∈
ℤ
f
⟼
g
f
→
d
∈
ℤ
B
⟼
b
d
↾
f
=
d
∈
ℤ
B
⟼
g
∈
ℤ
f
⟼
g
f
d
↾
f
61
60
eqeq2d
⊢
b
=
g
∈
ℤ
f
⟼
g
f
→
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
f
↔
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
g
∈
ℤ
f
⟼
g
f
d
↾
f
62
61
anbi2d
⊢
b
=
g
∈
ℤ
f
⟼
g
f
→
f
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
f
↔
f
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
g
∈
ℤ
f
⟼
g
f
d
↾
f
63
62
rspcev
⊢
g
∈
ℤ
f
⟼
g
f
∈
mzPoly
f
∧
f
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
g
∈
ℤ
f
⟼
g
f
d
↾
f
→
∃
b
∈
mzPoly
f
f
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
f
64
40
41
58
63
syl12anc
⊢
f
∈
B
→
∃
b
∈
mzPoly
f
f
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
f
65
fveq2
⊢
a
=
f
→
mzPoly
a
=
mzPoly
f
66
sseq1
⊢
a
=
f
→
a
⊆
B
↔
f
⊆
B
67
reseq2
⊢
a
=
f
→
d
↾
a
=
d
↾
f
68
67
fveq2d
⊢
a
=
f
→
b
d
↾
a
=
b
d
↾
f
69
68
mpteq2dv
⊢
a
=
f
→
d
∈
ℤ
B
⟼
b
d
↾
a
=
d
∈
ℤ
B
⟼
b
d
↾
f
70
69
eqeq2d
⊢
a
=
f
→
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
f
71
66
70
anbi12d
⊢
a
=
f
→
a
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
f
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
f
72
65
71
rexeqbidv
⊢
a
=
f
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
b
∈
mzPoly
f
f
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
f
73
72
rspcev
⊢
f
∈
Fin
∧
∃
b
∈
mzPoly
f
f
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
f
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
74
35
64
73
sylancr
⊢
f
∈
B
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
75
74
adantl
⊢
⊤
∧
f
∈
B
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
76
simplll
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
h
∈
Fin
77
simprll
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
j
∈
Fin
78
unfi
⊢
h
∈
Fin
∧
j
∈
Fin
→
h
∪
j
∈
Fin
79
76
77
78
syl2anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
h
∪
j
∈
Fin
80
vex
⊢
h
∈
V
81
vex
⊢
j
∈
V
82
80
81
unex
⊢
h
∪
j
∈
V
83
82
a1i
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
h
∪
j
∈
V
84
ssun1
⊢
h
⊆
h
∪
j
85
84
a1i
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
h
⊆
h
∪
j
86
simpllr
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
i
∈
mzPoly
h
87
mzpresrename
⊢
h
∪
j
∈
V
∧
h
⊆
h
∪
j
∧
i
∈
mzPoly
h
→
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
∈
mzPoly
h
∪
j
88
83
85
86
87
syl3anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
∈
mzPoly
h
∪
j
89
ssun2
⊢
j
⊆
h
∪
j
90
89
a1i
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
j
⊆
h
∪
j
91
simprlr
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
k
∈
mzPoly
j
92
mzpresrename
⊢
h
∪
j
∈
V
∧
j
⊆
h
∪
j
∧
k
∈
mzPoly
j
→
l
∈
ℤ
h
∪
j
⟼
k
l
↾
j
∈
mzPoly
h
∪
j
93
83
90
91
92
syl3anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
l
∈
ℤ
h
∪
j
⟼
k
l
↾
j
∈
mzPoly
h
∪
j
94
mzpaddmpt
⊢
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
∈
mzPoly
h
∪
j
∧
l
∈
ℤ
h
∪
j
⟼
k
l
↾
j
∈
mzPoly
h
∪
j
→
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
∈
mzPoly
h
∪
j
95
88
93
94
syl2anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
∈
mzPoly
h
∪
j
96
simplr
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
h
⊆
B
97
simprr
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
j
⊆
B
98
96
97
unssd
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
h
∪
j
⊆
B
99
ovex
⊢
ℤ
B
∈
V
100
99
a1i
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
ℤ
B
∈
V
101
1
a1i
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
B
∈
V
102
mzpresrename
⊢
B
∈
V
∧
h
⊆
B
∧
i
∈
mzPoly
h
→
d
∈
ℤ
B
⟼
i
d
↾
h
∈
mzPoly
B
103
101
96
86
102
syl3anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
d
∈
ℤ
B
⟼
i
d
↾
h
∈
mzPoly
B
104
mzpf
⊢
d
∈
ℤ
B
⟼
i
d
↾
h
∈
mzPoly
B
→
d
∈
ℤ
B
⟼
i
d
↾
h
:
ℤ
B
⟶
ℤ
105
ffn
⊢
d
∈
ℤ
B
⟼
i
d
↾
h
:
ℤ
B
⟶
ℤ
→
d
∈
ℤ
B
⟼
i
d
↾
h
Fn
ℤ
B
106
103
104
105
3syl
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
d
∈
ℤ
B
⟼
i
d
↾
h
Fn
ℤ
B
107
mzpresrename
⊢
B
∈
V
∧
j
⊆
B
∧
k
∈
mzPoly
j
→
d
∈
ℤ
B
⟼
k
d
↾
j
∈
mzPoly
B
108
101
97
91
107
syl3anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
d
∈
ℤ
B
⟼
k
d
↾
j
∈
mzPoly
B
109
mzpf
⊢
d
∈
ℤ
B
⟼
k
d
↾
j
∈
mzPoly
B
→
d
∈
ℤ
B
⟼
k
d
↾
j
:
ℤ
B
⟶
ℤ
110
ffn
⊢
d
∈
ℤ
B
⟼
k
d
↾
j
:
ℤ
B
⟶
ℤ
→
d
∈
ℤ
B
⟼
k
d
↾
j
Fn
ℤ
B
111
108
109
110
3syl
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
d
∈
ℤ
B
⟼
k
d
↾
j
Fn
ℤ
B
112
ofmpteq
⊢
ℤ
B
∈
V
∧
d
∈
ℤ
B
⟼
i
d
↾
h
Fn
ℤ
B
∧
d
∈
ℤ
B
⟼
k
d
↾
j
Fn
ℤ
B
→
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
i
d
↾
h
+
k
d
↾
j
113
100
106
111
112
syl3anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
i
d
↾
h
+
k
d
↾
j
114
elmapi
⊢
d
∈
ℤ
B
→
d
:
B
⟶
ℤ
115
fssres
⊢
d
:
B
⟶
ℤ
∧
h
∪
j
⊆
B
→
d
↾
h
∪
j
:
h
∪
j
⟶
ℤ
116
114
98
115
syl2anr
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
d
∈
ℤ
B
→
d
↾
h
∪
j
:
h
∪
j
⟶
ℤ
117
zex
⊢
ℤ
∈
V
118
117
82
elmap
⊢
d
↾
h
∪
j
∈
ℤ
h
∪
j
↔
d
↾
h
∪
j
:
h
∪
j
⟶
ℤ
119
116
118
sylibr
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
d
∈
ℤ
B
→
d
↾
h
∪
j
∈
ℤ
h
∪
j
120
reseq1
⊢
l
=
d
↾
h
∪
j
→
l
↾
h
=
d
↾
h
∪
j
↾
h
121
120
fveq2d
⊢
l
=
d
↾
h
∪
j
→
i
l
↾
h
=
i
d
↾
h
∪
j
↾
h
122
reseq1
⊢
l
=
d
↾
h
∪
j
→
l
↾
j
=
d
↾
h
∪
j
↾
j
123
122
fveq2d
⊢
l
=
d
↾
h
∪
j
→
k
l
↾
j
=
k
d
↾
h
∪
j
↾
j
124
121
123
oveq12d
⊢
l
=
d
↾
h
∪
j
→
i
l
↾
h
+
k
l
↾
j
=
i
d
↾
h
∪
j
↾
h
+
k
d
↾
h
∪
j
↾
j
125
eqid
⊢
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
126
ovex
⊢
i
d
↾
h
∪
j
↾
h
+
k
d
↾
h
∪
j
↾
j
∈
V
127
124
125
126
fvmpt
⊢
d
↾
h
∪
j
∈
ℤ
h
∪
j
→
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
d
↾
h
∪
j
=
i
d
↾
h
∪
j
↾
h
+
k
d
↾
h
∪
j
↾
j
128
119
127
syl
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
d
∈
ℤ
B
→
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
d
↾
h
∪
j
=
i
d
↾
h
∪
j
↾
h
+
k
d
↾
h
∪
j
↾
j
129
resabs1
⊢
h
⊆
h
∪
j
→
d
↾
h
∪
j
↾
h
=
d
↾
h
130
84
129
ax-mp
⊢
d
↾
h
∪
j
↾
h
=
d
↾
h
131
130
fveq2i
⊢
i
d
↾
h
∪
j
↾
h
=
i
d
↾
h
132
resabs1
⊢
j
⊆
h
∪
j
→
d
↾
h
∪
j
↾
j
=
d
↾
j
133
89
132
ax-mp
⊢
d
↾
h
∪
j
↾
j
=
d
↾
j
134
133
fveq2i
⊢
k
d
↾
h
∪
j
↾
j
=
k
d
↾
j
135
131
134
oveq12i
⊢
i
d
↾
h
∪
j
↾
h
+
k
d
↾
h
∪
j
↾
j
=
i
d
↾
h
+
k
d
↾
j
136
128
135
eqtr2di
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
d
∈
ℤ
B
→
i
d
↾
h
+
k
d
↾
j
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
d
↾
h
∪
j
137
136
mpteq2dva
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
d
∈
ℤ
B
⟼
i
d
↾
h
+
k
d
↾
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
d
↾
h
∪
j
138
113
137
eqtrd
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
d
↾
h
∪
j
139
fveq1
⊢
b
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
→
b
d
↾
h
∪
j
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
d
↾
h
∪
j
140
139
mpteq2dv
⊢
b
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
→
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
d
↾
h
∪
j
141
140
eqeq2d
⊢
b
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
→
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
↔
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
d
↾
h
∪
j
142
141
anbi2d
⊢
b
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
→
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
↔
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
d
↾
h
∪
j
143
142
rspcev
⊢
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
∈
mzPoly
h
∪
j
∧
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
+
k
l
↾
j
d
↾
h
∪
j
→
∃
b
∈
mzPoly
h
∪
j
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
144
95
98
138
143
syl12anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
∃
b
∈
mzPoly
h
∪
j
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
145
mzpmulmpt
⊢
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
∈
mzPoly
h
∪
j
∧
l
∈
ℤ
h
∪
j
⟼
k
l
↾
j
∈
mzPoly
h
∪
j
→
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
∈
mzPoly
h
∪
j
146
88
93
145
syl2anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
∈
mzPoly
h
∪
j
147
ofmpteq
⊢
ℤ
B
∈
V
∧
d
∈
ℤ
B
⟼
i
d
↾
h
Fn
ℤ
B
∧
d
∈
ℤ
B
⟼
k
d
↾
j
Fn
ℤ
B
→
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
i
d
↾
h
k
d
↾
j
148
100
106
111
147
syl3anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
i
d
↾
h
k
d
↾
j
149
121
123
oveq12d
⊢
l
=
d
↾
h
∪
j
→
i
l
↾
h
k
l
↾
j
=
i
d
↾
h
∪
j
↾
h
k
d
↾
h
∪
j
↾
j
150
eqid
⊢
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
151
ovex
⊢
i
d
↾
h
∪
j
↾
h
k
d
↾
h
∪
j
↾
j
∈
V
152
149
150
151
fvmpt
⊢
d
↾
h
∪
j
∈
ℤ
h
∪
j
→
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
d
↾
h
∪
j
=
i
d
↾
h
∪
j
↾
h
k
d
↾
h
∪
j
↾
j
153
119
152
syl
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
d
∈
ℤ
B
→
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
d
↾
h
∪
j
=
i
d
↾
h
∪
j
↾
h
k
d
↾
h
∪
j
↾
j
154
131
134
oveq12i
⊢
i
d
↾
h
∪
j
↾
h
k
d
↾
h
∪
j
↾
j
=
i
d
↾
h
k
d
↾
j
155
153
154
eqtr2di
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
d
∈
ℤ
B
→
i
d
↾
h
k
d
↾
j
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
d
↾
h
∪
j
156
155
mpteq2dva
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
d
∈
ℤ
B
⟼
i
d
↾
h
k
d
↾
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
d
↾
h
∪
j
157
148
156
eqtrd
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
d
↾
h
∪
j
158
fveq1
⊢
b
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
→
b
d
↾
h
∪
j
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
d
↾
h
∪
j
159
158
mpteq2dv
⊢
b
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
→
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
d
↾
h
∪
j
160
159
eqeq2d
⊢
b
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
→
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
↔
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
d
↾
h
∪
j
161
160
anbi2d
⊢
b
=
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
→
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
↔
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
d
↾
h
∪
j
162
161
rspcev
⊢
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
∈
mzPoly
h
∪
j
∧
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
l
∈
ℤ
h
∪
j
⟼
i
l
↾
h
k
l
↾
j
d
↾
h
∪
j
→
∃
b
∈
mzPoly
h
∪
j
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
163
146
98
157
162
syl12anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
∃
b
∈
mzPoly
h
∪
j
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
164
fveq2
⊢
a
=
h
∪
j
→
mzPoly
a
=
mzPoly
h
∪
j
165
sseq1
⊢
a
=
h
∪
j
→
a
⊆
B
↔
h
∪
j
⊆
B
166
reseq2
⊢
a
=
h
∪
j
→
d
↾
a
=
d
↾
h
∪
j
167
166
fveq2d
⊢
a
=
h
∪
j
→
b
d
↾
a
=
b
d
↾
h
∪
j
168
167
mpteq2dv
⊢
a
=
h
∪
j
→
d
∈
ℤ
B
⟼
b
d
↾
a
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
169
168
eqeq2d
⊢
a
=
h
∪
j
→
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
170
165
169
anbi12d
⊢
a
=
h
∪
j
→
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
171
164
170
rexeqbidv
⊢
a
=
h
∪
j
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
b
∈
mzPoly
h
∪
j
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
172
168
eqeq2d
⊢
a
=
h
∪
j
→
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
173
165
172
anbi12d
⊢
a
=
h
∪
j
→
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
174
164
173
rexeqbidv
⊢
a
=
h
∪
j
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
b
∈
mzPoly
h
∪
j
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
175
171
174
anbi12d
⊢
a
=
h
∪
j
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
b
∈
mzPoly
h
∪
j
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
∧
∃
b
∈
mzPoly
h
∪
j
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
176
175
rspcev
⊢
h
∪
j
∈
Fin
∧
∃
b
∈
mzPoly
h
∪
j
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
∧
∃
b
∈
mzPoly
h
∪
j
h
∪
j
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
h
∪
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
177
79
144
163
176
syl12anc
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
178
177
adantlrr
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
179
178
adantrrr
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
180
simplrr
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
181
simprrr
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
182
180
181
oveq12d
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
f
+
f
g
=
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
183
182
eqeq1d
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
184
183
anbi2d
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
185
184
rexbidv
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
186
180
181
oveq12d
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
f
×
f
g
=
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
187
186
eqeq1d
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
188
187
anbi2d
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
189
188
rexbidv
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
190
185
189
anbi12d
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
191
190
rexbidv
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
+
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
b
∈
mzPoly
a
a
⊆
B
∧
d
∈
ℤ
B
⟼
i
d
↾
h
×
f
d
∈
ℤ
B
⟼
k
d
↾
j
=
d
∈
ℤ
B
⟼
b
d
↾
a
192
179
191
mpbird
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
193
r19.40
⊢
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
194
192
193
syl
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
j
∈
Fin
∧
k
∈
mzPoly
j
∧
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
195
194
exp32
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
→
j
∈
Fin
∧
k
∈
mzPoly
j
→
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
196
195
rexlimdvv
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
∧
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
→
∃
j
∈
Fin
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
197
196
ex
⊢
h
∈
Fin
∧
i
∈
mzPoly
h
→
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
→
∃
j
∈
Fin
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
198
197
rexlimivv
⊢
∃
h
∈
Fin
∃
i
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
→
∃
j
∈
Fin
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
199
198
imp
⊢
∃
h
∈
Fin
∃
i
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
∃
j
∈
Fin
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
200
199
ad2ant2l
⊢
f
:
ℤ
B
⟶
ℤ
∧
∃
h
∈
Fin
∃
i
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
g
:
ℤ
B
⟶
ℤ
∧
∃
j
∈
Fin
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
201
200
3adant1
⊢
⊤
∧
f
:
ℤ
B
⟶
ℤ
∧
∃
h
∈
Fin
∃
i
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
g
:
ℤ
B
⟶
ℤ
∧
∃
j
∈
Fin
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
∧
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
202
201
simpld
⊢
⊤
∧
f
:
ℤ
B
⟶
ℤ
∧
∃
h
∈
Fin
∃
i
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
g
:
ℤ
B
⟶
ℤ
∧
∃
j
∈
Fin
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
203
201
simprd
⊢
⊤
∧
f
:
ℤ
B
⟶
ℤ
∧
∃
h
∈
Fin
∃
i
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
∧
g
:
ℤ
B
⟶
ℤ
∧
∃
j
∈
Fin
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
204
eqeq1
⊢
e
=
ℤ
B
×
f
→
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
205
204
anbi2d
⊢
e
=
ℤ
B
×
f
→
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
a
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
206
205
2rexbidv
⊢
e
=
ℤ
B
×
f
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
ℤ
B
×
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
207
eqeq1
⊢
e
=
g
∈
ℤ
B
⟼
g
f
→
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
208
207
anbi2d
⊢
e
=
g
∈
ℤ
B
⟼
g
f
→
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
a
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
209
208
2rexbidv
⊢
e
=
g
∈
ℤ
B
⟼
g
f
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
g
∈
ℤ
B
⟼
g
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
210
eqeq1
⊢
e
=
f
→
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
211
210
anbi2d
⊢
e
=
f
→
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
a
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
212
211
2rexbidv
⊢
e
=
f
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
213
fveq2
⊢
a
=
h
→
mzPoly
a
=
mzPoly
h
214
sseq1
⊢
a
=
h
→
a
⊆
B
↔
h
⊆
B
215
reseq2
⊢
a
=
h
→
d
↾
a
=
d
↾
h
216
215
fveq2d
⊢
a
=
h
→
b
d
↾
a
=
b
d
↾
h
217
216
mpteq2dv
⊢
a
=
h
→
d
∈
ℤ
B
⟼
b
d
↾
a
=
d
∈
ℤ
B
⟼
b
d
↾
h
218
217
eqeq2d
⊢
a
=
h
→
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
f
=
d
∈
ℤ
B
⟼
b
d
↾
h
219
214
218
anbi12d
⊢
a
=
h
→
a
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
b
d
↾
h
220
213
219
rexeqbidv
⊢
a
=
h
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
b
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
b
d
↾
h
221
fveq1
⊢
b
=
i
→
b
d
↾
h
=
i
d
↾
h
222
221
mpteq2dv
⊢
b
=
i
→
d
∈
ℤ
B
⟼
b
d
↾
h
=
d
∈
ℤ
B
⟼
i
d
↾
h
223
222
eqeq2d
⊢
b
=
i
→
f
=
d
∈
ℤ
B
⟼
b
d
↾
h
↔
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
224
223
anbi2d
⊢
b
=
i
→
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
b
d
↾
h
↔
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
225
224
cbvrexvw
⊢
∃
b
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
b
d
↾
h
↔
∃
i
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
226
220
225
bitrdi
⊢
a
=
h
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
i
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
227
226
cbvrexvw
⊢
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
h
∈
Fin
∃
i
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
228
212
227
bitrdi
⊢
e
=
f
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
h
∈
Fin
∃
i
∈
mzPoly
h
h
⊆
B
∧
f
=
d
∈
ℤ
B
⟼
i
d
↾
h
229
eqeq1
⊢
e
=
g
→
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
230
229
anbi2d
⊢
e
=
g
→
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
a
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
231
230
2rexbidv
⊢
e
=
g
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
232
fveq2
⊢
a
=
j
→
mzPoly
a
=
mzPoly
j
233
sseq1
⊢
a
=
j
→
a
⊆
B
↔
j
⊆
B
234
reseq2
⊢
a
=
j
→
d
↾
a
=
d
↾
j
235
234
fveq2d
⊢
a
=
j
→
b
d
↾
a
=
b
d
↾
j
236
235
mpteq2dv
⊢
a
=
j
→
d
∈
ℤ
B
⟼
b
d
↾
a
=
d
∈
ℤ
B
⟼
b
d
↾
j
237
236
eqeq2d
⊢
a
=
j
→
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
g
=
d
∈
ℤ
B
⟼
b
d
↾
j
238
233
237
anbi12d
⊢
a
=
j
→
a
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
b
d
↾
j
239
232
238
rexeqbidv
⊢
a
=
j
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
b
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
b
d
↾
j
240
fveq1
⊢
b
=
k
→
b
d
↾
j
=
k
d
↾
j
241
240
mpteq2dv
⊢
b
=
k
→
d
∈
ℤ
B
⟼
b
d
↾
j
=
d
∈
ℤ
B
⟼
k
d
↾
j
242
241
eqeq2d
⊢
b
=
k
→
g
=
d
∈
ℤ
B
⟼
b
d
↾
j
↔
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
243
242
anbi2d
⊢
b
=
k
→
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
b
d
↾
j
↔
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
244
243
cbvrexvw
⊢
∃
b
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
b
d
↾
j
↔
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
245
239
244
bitrdi
⊢
a
=
j
→
∃
b
∈
mzPoly
a
a
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
246
245
cbvrexvw
⊢
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
j
∈
Fin
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
247
231
246
bitrdi
⊢
e
=
g
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
j
∈
Fin
∃
k
∈
mzPoly
j
j
⊆
B
∧
g
=
d
∈
ℤ
B
⟼
k
d
↾
j
248
eqeq1
⊢
e
=
f
+
f
g
→
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
249
248
anbi2d
⊢
e
=
f
+
f
g
→
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
250
249
2rexbidv
⊢
e
=
f
+
f
g
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
+
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
251
eqeq1
⊢
e
=
f
×
f
g
→
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
252
251
anbi2d
⊢
e
=
f
×
f
g
→
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
253
252
2rexbidv
⊢
e
=
f
×
f
g
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
f
×
f
g
=
d
∈
ℤ
B
⟼
b
d
↾
a
254
eqeq1
⊢
e
=
A
→
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
A
=
d
∈
ℤ
B
⟼
b
d
↾
a
255
254
anbi2d
⊢
e
=
A
→
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
a
⊆
B
∧
A
=
d
∈
ℤ
B
⟼
b
d
↾
a
256
255
2rexbidv
⊢
e
=
A
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
e
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
A
=
d
∈
ℤ
B
⟼
b
d
↾
a
257
34
75
202
203
206
209
228
247
250
253
256
mzpindd
⊢
⊤
∧
A
∈
mzPoly
B
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
A
=
d
∈
ℤ
B
⟼
b
d
↾
a
258
2
257
mpan
⊢
A
∈
mzPoly
B
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
A
=
d
∈
ℤ
B
⟼
b
d
↾
a
259
reseq1
⊢
d
=
c
→
d
↾
a
=
c
↾
a
260
259
fveq2d
⊢
d
=
c
→
b
d
↾
a
=
b
c
↾
a
261
260
cbvmptv
⊢
d
∈
ℤ
B
⟼
b
d
↾
a
=
c
∈
ℤ
B
⟼
b
c
↾
a
262
261
eqeq2i
⊢
A
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
A
=
c
∈
ℤ
B
⟼
b
c
↾
a
263
262
anbi2i
⊢
a
⊆
B
∧
A
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
a
⊆
B
∧
A
=
c
∈
ℤ
B
⟼
b
c
↾
a
264
263
2rexbii
⊢
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
A
=
d
∈
ℤ
B
⟼
b
d
↾
a
↔
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
A
=
c
∈
ℤ
B
⟼
b
c
↾
a
265
258
264
sylib
⊢
A
∈
mzPoly
B
→
∃
a
∈
Fin
∃
b
∈
mzPoly
a
a
⊆
B
∧
A
=
c
∈
ℤ
B
⟼
b
c
↾
a