Metamath Proof Explorer


Theorem opnmbllem0

Description: Lemma for ismblfin ; could also be used to shorten proof of opnmbllem . (Contributed by Brendan Leahy, 13-Jul-2018)

Ref Expression
Assertion opnmbllem0 AtopGenran..zranx,y0x2yx+12y|.zA=A

Proof

Step Hyp Ref Expression
1 fveq2 z=w.z=.w
2 1 sseq1d z=w.zA.wA
3 2 elrab wzranx,y0x2yx+12y|.zAwranx,y0x2yx+12y.wA
4 simprr AtopGenran.wranx,y0x2yx+12y.wA.wA
5 fvex .wV
6 5 elpw .w𝒫A.wA
7 4 6 sylibr AtopGenran.wranx,y0x2yx+12y.wA.w𝒫A
8 3 7 sylan2b AtopGenran.wzranx,y0x2yx+12y|.zA.w𝒫A
9 8 ralrimiva AtopGenran.wzranx,y0x2yx+12y|.zA.w𝒫A
10 iccf .:*×*𝒫*
11 ffun .:*×*𝒫*Fun.
12 10 11 ax-mp Fun.
13 ssrab2 zranx,y0x2yx+12y|.zAranx,y0x2yx+12y
14 oveq1 x=rx2y=r2y
15 oveq1 x=rx+1=r+1
16 15 oveq1d x=rx+12y=r+12y
17 14 16 opeq12d x=rx2yx+12y=r2yr+12y
18 oveq2 y=s2y=2s
19 18 oveq2d y=sr2y=r2s
20 18 oveq2d y=sr+12y=r+12s
21 19 20 opeq12d y=sr2yr+12y=r2sr+12s
22 17 21 cbvmpov x,y0x2yx+12y=r,s0r2sr+12s
23 22 dyadf x,y0x2yx+12y:×02
24 frn x,y0x2yx+12y:×02ranx,y0x2yx+12y2
25 23 24 ax-mp ranx,y0x2yx+12y2
26 inss2 22
27 rexpssxrxp 2*×*
28 26 27 sstri 2*×*
29 25 28 sstri ranx,y0x2yx+12y*×*
30 13 29 sstri zranx,y0x2yx+12y|.zA*×*
31 10 fdmi dom.=*×*
32 30 31 sseqtrri zranx,y0x2yx+12y|.zAdom.
33 funimass4 Fun.zranx,y0x2yx+12y|.zAdom..zranx,y0x2yx+12y|.zA𝒫Awzranx,y0x2yx+12y|.zA.w𝒫A
34 12 32 33 mp2an .zranx,y0x2yx+12y|.zA𝒫Awzranx,y0x2yx+12y|.zA.w𝒫A
35 9 34 sylibr AtopGenran..zranx,y0x2yx+12y|.zA𝒫A
36 sspwuni .zranx,y0x2yx+12y|.zA𝒫A.zranx,y0x2yx+12y|.zAA
37 35 36 sylib AtopGenran..zranx,y0x2yx+12y|.zAA
38 eqid abs2=abs2
39 38 rexmet abs2∞Met
40 eqid MetOpenabs2=MetOpenabs2
41 38 40 tgioo topGenran.=MetOpenabs2
42 41 mopni2 abs2∞MetAtopGenran.wAr+wballabs2rA
43 39 42 mp3an1 AtopGenran.wAr+wballabs2rA
44 elssuni AtopGenran.AtopGenran.
45 uniretop =topGenran.
46 44 45 sseqtrrdi AtopGenran.A
47 46 sselda AtopGenran.wAw
48 rpre r+r
49 38 bl2ioo wrwballabs2r=wrw+r
50 47 48 49 syl2an AtopGenran.wAr+wballabs2r=wrw+r
51 50 sseq1d AtopGenran.wAr+wballabs2rAwrw+rA
52 2re 2
53 1lt2 1<2
54 expnlbnd r+21<2n12n<r
55 52 53 54 mp3an23 r+n12n<r
56 55 ad2antrl AtopGenran.wAr+wrw+rAn12n<r
57 47 ad2antrr AtopGenran.wAr+wrw+rAn12n<rw
58 2nn 2
59 nnnn0 nn0
60 59 ad2antrl AtopGenran.wAr+wrw+rAn12n<rn0
61 nnexpcl 2n02n
62 58 60 61 sylancr AtopGenran.wAr+wrw+rAn12n<r2n
63 62 nnred AtopGenran.wAr+wrw+rAn12n<r2n
64 57 63 remulcld AtopGenran.wAr+wrw+rAn12n<rw2n
65 fllelt w2nw2nw2nw2n<w2n+1
66 64 65 syl AtopGenran.wAr+wrw+rAn12n<rw2nw2nw2n<w2n+1
67 66 simpld AtopGenran.wAr+wrw+rAn12n<rw2nw2n
68 reflcl w2nw2n
69 64 68 syl AtopGenran.wAr+wrw+rAn12n<rw2n
70 62 nngt0d AtopGenran.wAr+wrw+rAn12n<r0<2n
71 ledivmul2 w2nw2n0<2nw2n2nww2nw2n
72 69 57 63 70 71 syl112anc AtopGenran.wAr+wrw+rAn12n<rw2n2nww2nw2n
73 67 72 mpbird AtopGenran.wAr+wrw+rAn12n<rw2n2nw
74 peano2re w2nw2n+1
75 69 74 syl AtopGenran.wAr+wrw+rAn12n<rw2n+1
76 75 62 nndivred AtopGenran.wAr+wrw+rAn12n<rw2n+12n
77 66 simprd AtopGenran.wAr+wrw+rAn12n<rw2n<w2n+1
78 ltmuldiv ww2n+12n0<2nw2n<w2n+1w<w2n+12n
79 57 75 63 70 78 syl112anc AtopGenran.wAr+wrw+rAn12n<rw2n<w2n+1w<w2n+12n
80 77 79 mpbid AtopGenran.wAr+wrw+rAn12n<rw<w2n+12n
81 57 76 80 ltled AtopGenran.wAr+wrw+rAn12n<rww2n+12n
82 69 62 nndivred AtopGenran.wAr+wrw+rAn12n<rw2n2n
83 elicc2 w2n2nw2n+12nww2n2nw2n+12nww2n2nwww2n+12n
84 82 76 83 syl2anc AtopGenran.wAr+wrw+rAn12n<rww2n2nw2n+12nww2n2nwww2n+12n
85 57 73 81 84 mpbir3and AtopGenran.wAr+wrw+rAn12n<rww2n2nw2n+12n
86 64 flcld AtopGenran.wAr+wrw+rAn12n<rw2n
87 22 dyadval w2nn0w2nx,y0x2yx+12yn=w2n2nw2n+12n
88 86 60 87 syl2anc AtopGenran.wAr+wrw+rAn12n<rw2nx,y0x2yx+12yn=w2n2nw2n+12n
89 88 fveq2d AtopGenran.wAr+wrw+rAn12n<r.w2nx,y0x2yx+12yn=.w2n2nw2n+12n
90 df-ov w2n2nw2n+12n=.w2n2nw2n+12n
91 89 90 eqtr4di AtopGenran.wAr+wrw+rAn12n<r.w2nx,y0x2yx+12yn=w2n2nw2n+12n
92 85 91 eleqtrrd AtopGenran.wAr+wrw+rAn12n<rw.w2nx,y0x2yx+12yn
93 ffn x,y0x2yx+12y:×02x,y0x2yx+12yFn×0
94 23 93 ax-mp x,y0x2yx+12yFn×0
95 fnovrn x,y0x2yx+12yFn×0w2nn0w2nx,y0x2yx+12ynranx,y0x2yx+12y
96 94 95 mp3an1 w2nn0w2nx,y0x2yx+12ynranx,y0x2yx+12y
97 86 60 96 syl2anc AtopGenran.wAr+wrw+rAn12n<rw2nx,y0x2yx+12ynranx,y0x2yx+12y
98 simplrl AtopGenran.wAr+wrw+rAn12n<rr+
99 98 rpred AtopGenran.wAr+wrw+rAn12n<rr
100 57 99 resubcld AtopGenran.wAr+wrw+rAn12n<rwr
101 100 rexrd AtopGenran.wAr+wrw+rAn12n<rwr*
102 57 99 readdcld AtopGenran.wAr+wrw+rAn12n<rw+r
103 102 rexrd AtopGenran.wAr+wrw+rAn12n<rw+r*
104 82 99 readdcld AtopGenran.wAr+wrw+rAn12n<rw2n2n+r
105 69 recnd AtopGenran.wAr+wrw+rAn12n<rw2n
106 1cnd AtopGenran.wAr+wrw+rAn12n<r1
107 63 recnd AtopGenran.wAr+wrw+rAn12n<r2n
108 62 nnne0d AtopGenran.wAr+wrw+rAn12n<r2n0
109 105 106 107 108 divdird AtopGenran.wAr+wrw+rAn12n<rw2n+12n=w2n2n+12n
110 62 nnrecred AtopGenran.wAr+wrw+rAn12n<r12n
111 simprr AtopGenran.wAr+wrw+rAn12n<r12n<r
112 110 99 82 111 ltadd2dd AtopGenran.wAr+wrw+rAn12n<rw2n2n+12n<w2n2n+r
113 109 112 eqbrtrd AtopGenran.wAr+wrw+rAn12n<rw2n+12n<w2n2n+r
114 57 76 104 80 113 lttrd AtopGenran.wAr+wrw+rAn12n<rw<w2n2n+r
115 57 99 82 ltsubaddd AtopGenran.wAr+wrw+rAn12n<rwr<w2n2nw<w2n2n+r
116 114 115 mpbird AtopGenran.wAr+wrw+rAn12n<rwr<w2n2n
117 57 110 readdcld AtopGenran.wAr+wrw+rAn12n<rw+12n
118 82 57 110 73 leadd1dd AtopGenran.wAr+wrw+rAn12n<rw2n2n+12nw+12n
119 109 118 eqbrtrd AtopGenran.wAr+wrw+rAn12n<rw2n+12nw+12n
120 110 99 57 111 ltadd2dd AtopGenran.wAr+wrw+rAn12n<rw+12n<w+r
121 76 117 102 119 120 lelttrd AtopGenran.wAr+wrw+rAn12n<rw2n+12n<w+r
122 iccssioo wr*w+r*wr<w2n2nw2n+12n<w+rw2n2nw2n+12nwrw+r
123 101 103 116 121 122 syl22anc AtopGenran.wAr+wrw+rAn12n<rw2n2nw2n+12nwrw+r
124 91 123 eqsstrd AtopGenran.wAr+wrw+rAn12n<r.w2nx,y0x2yx+12ynwrw+r
125 simplrr AtopGenran.wAr+wrw+rAn12n<rwrw+rA
126 124 125 sstrd AtopGenran.wAr+wrw+rAn12n<r.w2nx,y0x2yx+12ynA
127 fveq2 z=w2nx,y0x2yx+12yn.z=.w2nx,y0x2yx+12yn
128 127 sseq1d z=w2nx,y0x2yx+12yn.zA.w2nx,y0x2yx+12ynA
129 128 elrab w2nx,y0x2yx+12ynzranx,y0x2yx+12y|.zAw2nx,y0x2yx+12ynranx,y0x2yx+12y.w2nx,y0x2yx+12ynA
130 97 126 129 sylanbrc AtopGenran.wAr+wrw+rAn12n<rw2nx,y0x2yx+12ynzranx,y0x2yx+12y|.zA
131 funfvima2 Fun.zranx,y0x2yx+12y|.zAdom.w2nx,y0x2yx+12ynzranx,y0x2yx+12y|.zA.w2nx,y0x2yx+12yn.zranx,y0x2yx+12y|.zA
132 12 32 131 mp2an w2nx,y0x2yx+12ynzranx,y0x2yx+12y|.zA.w2nx,y0x2yx+12yn.zranx,y0x2yx+12y|.zA
133 130 132 syl AtopGenran.wAr+wrw+rAn12n<r.w2nx,y0x2yx+12yn.zranx,y0x2yx+12y|.zA
134 elunii w.w2nx,y0x2yx+12yn.w2nx,y0x2yx+12yn.zranx,y0x2yx+12y|.zAw.zranx,y0x2yx+12y|.zA
135 92 133 134 syl2anc AtopGenran.wAr+wrw+rAn12n<rw.zranx,y0x2yx+12y|.zA
136 56 135 rexlimddv AtopGenran.wAr+wrw+rAw.zranx,y0x2yx+12y|.zA
137 136 expr AtopGenran.wAr+wrw+rAw.zranx,y0x2yx+12y|.zA
138 51 137 sylbid AtopGenran.wAr+wballabs2rAw.zranx,y0x2yx+12y|.zA
139 138 rexlimdva AtopGenran.wAr+wballabs2rAw.zranx,y0x2yx+12y|.zA
140 43 139 mpd AtopGenran.wAw.zranx,y0x2yx+12y|.zA
141 37 140 eqelssd AtopGenran..zranx,y0x2yx+12y|.zA=A