Metamath Proof Explorer


Theorem ovolval4lem1

Description: |- ( ( ph /\ n e. A ) -> ( ( (,) o. G ) n ) = ( ( (,) o. F ) n ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval4lem1.f φF:*×*
ovolval4lem1.g G=n1stFnif1stFn2ndFn2ndFn1stFn
ovolval4lem1.a A=n|1stFn2ndFn
Assertion ovolval4lem1 φran.F=ran.Gvol.F=vol.G

Proof

Step Hyp Ref Expression
1 ovolval4lem1.f φF:*×*
2 ovolval4lem1.g G=n1stFnif1stFn2ndFn2ndFn1stFn
3 ovolval4lem1.a A=n|1stFn2ndFn
4 ioof .:*×*𝒫
5 4 a1i φ.:*×*𝒫
6 fco .:*×*𝒫F:*×*.F:𝒫
7 5 1 6 syl2anc φ.F:𝒫
8 7 ffnd φ.FFn
9 fniunfv .FFnn.Fn=ran.F
10 8 9 syl φn.Fn=ran.F
11 10 eqcomd φran.F=n.Fn
12 ssrab2 n|1stFn2ndFn
13 3 12 eqsstri A
14 undif AAA=
15 13 14 mpbi AA=
16 15 eqcomi =AA
17 16 iuneq1i n.Fn=nAA.Fn
18 iunxun nAA.Fn=nA.FnnA.Fn
19 17 18 eqtri n.Fn=nA.FnnA.Fn
20 19 a1i φn.Fn=nA.FnnA.Fn
21 1 ffvelcdmda φnFn*×*
22 xp1st Fn*×*1stFn*
23 21 22 syl φn1stFn*
24 xp2nd Fn*×*2ndFn*
25 21 24 syl φn2ndFn*
26 25 23 ifcld φnif1stFn2ndFn2ndFn1stFn*
27 23 26 opelxpd φn1stFnif1stFn2ndFn2ndFn1stFn*×*
28 27 2 fmptd φG:*×*
29 fco .:*×*𝒫G:*×*.G:𝒫
30 5 28 29 syl2anc φ.G:𝒫
31 30 ffnd φ.GFn
32 fniunfv .GFnn.Gn=ran.G
33 31 32 syl φn.Gn=ran.G
34 33 eqcomd φran.G=n.Gn
35 16 iuneq1i n.Gn=nAA.Gn
36 iunxun nAA.Gn=nA.GnnA.Gn
37 35 36 eqtri n.Gn=nA.GnnA.Gn
38 37 a1i φn.Gn=nA.GnnA.Gn
39 28 adantr φnAG:*×*
40 13 sseli nAn
41 40 adantl φnAn
42 fvco3 G:*×*n.Gn=.Gn
43 39 41 42 syl2anc φnA.Gn=.Gn
44 1 adantr φnAF:*×*
45 fvco3 F:*×*n.Fn=.Fn
46 44 41 45 syl2anc φnA.Fn=.Fn
47 simpl φnAφ
48 1st2nd2 Fn*×*Fn=1stFn2ndFn
49 21 48 syl φnFn=1stFn2ndFn
50 47 41 49 syl2anc φnAFn=1stFn2ndFn
51 2 a1i φG=n1stFnif1stFn2ndFn2ndFn1stFn
52 27 elexd φn1stFnif1stFn2ndFn2ndFn1stFnV
53 51 52 fvmpt2d φnGn=1stFnif1stFn2ndFn2ndFn1stFn
54 47 41 53 syl2anc φnAGn=1stFnif1stFn2ndFn2ndFn1stFn
55 3 eleq2i nAnn|1stFn2ndFn
56 55 biimpi nAnn|1stFn2ndFn
57 rabid nn|1stFn2ndFnn1stFn2ndFn
58 56 57 sylib nAn1stFn2ndFn
59 58 simprd nA1stFn2ndFn
60 59 adantl φnA1stFn2ndFn
61 60 iftrued φnAif1stFn2ndFn2ndFn1stFn=2ndFn
62 61 opeq2d φnA1stFnif1stFn2ndFn2ndFn1stFn=1stFn2ndFn
63 eqidd φnA1stFn2ndFn=1stFn2ndFn
64 54 62 63 3eqtrd φnAGn=1stFn2ndFn
65 50 64 eqtr4d φnAFn=Gn
66 65 fveq2d φnA.Fn=.Gn
67 46 66 eqtrd φnA.Fn=.Gn
68 43 67 eqtr4d φnA.Gn=.Fn
69 68 iuneq2dv φnA.Gn=nA.Fn
70 28 adantr φnAG:*×*
71 eldifi nAn
72 71 adantl φnAn
73 70 72 42 syl2anc φnA.Gn=.Gn
74 simpl φnAφ
75 74 72 53 syl2anc φnAGn=1stFnif1stFn2ndFn2ndFn1stFn
76 71 anim1i nA1stFn2ndFnn1stFn2ndFn
77 76 57 sylibr nA1stFn2ndFnnn|1stFn2ndFn
78 77 55 sylibr nA1stFn2ndFnnA
79 78 adantll φnA1stFn2ndFnnA
80 eldifn nA¬nA
81 80 ad2antlr φnA1stFn2ndFn¬nA
82 79 81 pm2.65da φnA¬1stFn2ndFn
83 82 iffalsed φnAif1stFn2ndFn2ndFn1stFn=1stFn
84 83 opeq2d φnA1stFnif1stFn2ndFn2ndFn1stFn=1stFn1stFn
85 75 84 eqtrd φnAGn=1stFn1stFn
86 85 fveq2d φnA.Gn=.1stFn1stFn
87 iooid 1stFn1stFn=
88 87 eqcomi =1stFn1stFn
89 df-ov 1stFn1stFn=.1stFn1stFn
90 88 89 eqtr2i .1stFn1stFn=
91 90 a1i φnA.1stFn1stFn=
92 73 86 91 3eqtrd φnA.Gn=
93 92 iuneq2dv φnA.Gn=nA
94 iun0 nA=
95 94 a1i φnA=
96 93 95 eqtrd φnA.Gn=
97 74 1 syl φnAF:*×*
98 97 72 45 syl2anc φnA.Fn=.Fn
99 74 72 49 syl2anc φnAFn=1stFn2ndFn
100 99 fveq2d φnA.Fn=.1stFn2ndFn
101 df-ov 1stFn2ndFn=.1stFn2ndFn
102 101 a1i φnA1stFn2ndFn=.1stFn2ndFn
103 simplr φnA¬2ndFn1stFnnA
104 72 23 syldan φnA1stFn*
105 104 adantr φnA¬2ndFn1stFn1stFn*
106 72 25 syldan φnA2ndFn*
107 106 adantr φnA¬2ndFn1stFn2ndFn*
108 simpr φnA¬2ndFn1stFn¬2ndFn1stFn
109 105 107 xrltnled φnA¬2ndFn1stFn1stFn<2ndFn¬2ndFn1stFn
110 108 109 mpbird φnA¬2ndFn1stFn1stFn<2ndFn
111 105 107 110 xrltled φnA¬2ndFn1stFn1stFn2ndFn
112 103 111 78 syl2anc φnA¬2ndFn1stFnnA
113 80 ad2antlr φnA¬2ndFn1stFn¬nA
114 112 113 condan φnA2ndFn1stFn
115 ioo0 1stFn*2ndFn*1stFn2ndFn=2ndFn1stFn
116 104 106 115 syl2anc φnA1stFn2ndFn=2ndFn1stFn
117 114 116 mpbird φnA1stFn2ndFn=
118 102 117 eqtr3d φnA.1stFn2ndFn=
119 98 100 118 3eqtrd φnA.Fn=
120 119 iuneq2dv φnA.Fn=nA
121 120 95 eqtrd φnA.Fn=
122 96 121 eqtr4d φnA.Gn=nA.Fn
123 69 122 uneq12d φnA.GnnA.Gn=nA.FnnA.Fn
124 34 38 123 3eqtrrd φnA.FnnA.Fn=ran.G
125 11 20 124 3eqtrd φran.F=ran.G
126 volf vol:domvol0+∞
127 126 a1i φvol:domvol0+∞
128 1 adantr φnF:*×*
129 simpr φnn
130 128 129 45 syl2anc φn.Fn=.Fn
131 49 fveq2d φn.Fn=.1stFn2ndFn
132 101 eqcomi .1stFn2ndFn=1stFn2ndFn
133 132 a1i φn.1stFn2ndFn=1stFn2ndFn
134 130 131 133 3eqtrd φn.Fn=1stFn2ndFn
135 ioombl 1stFn2ndFndomvol
136 135 a1i φn1stFn2ndFndomvol
137 134 136 eqeltrd φn.Fndomvol
138 137 ralrimiva φn.Fndomvol
139 8 138 jca φ.FFnn.Fndomvol
140 ffnfv .F:domvol.FFnn.Fndomvol
141 139 140 sylibr φ.F:domvol
142 fco vol:domvol0+∞.F:domvolvol.F:0+∞
143 127 141 142 syl2anc φvol.F:0+∞
144 143 ffnd φvol.FFn
145 68 adantlr φnnA.Gn=.Fn
146 137 adantr φnnA.Fndomvol
147 145 146 eqeltrd φnnA.Gndomvol
148 simpll φn¬nAφ
149 eldif nAn¬nA
150 149 bicomi n¬nAnA
151 150 biimpi n¬nAnA
152 151 adantll φn¬nAnA
153 117 135 eqeltrrdi φnAdomvol
154 92 153 eqeltrd φnA.Gndomvol
155 148 152 154 syl2anc φn¬nA.Gndomvol
156 147 155 pm2.61dan φn.Gndomvol
157 156 ralrimiva φn.Gndomvol
158 31 157 jca φ.GFnn.Gndomvol
159 ffnfv .G:domvol.GFnn.Gndomvol
160 158 159 sylibr φ.G:domvol
161 fco vol:domvol0+∞.G:domvolvol.G:0+∞
162 127 160 161 syl2anc φvol.G:0+∞
163 162 ffnd φvol.GFn
164 145 eqcomd φnnA.Fn=.Gn
165 119 92 eqtr4d φnA.Fn=.Gn
166 148 152 165 syl2anc φn¬nA.Fn=.Gn
167 164 166 pm2.61dan φn.Fn=.Gn
168 167 fveq2d φnvol.Fn=vol.Gn
169 fnfun .FFnFun.F
170 8 169 syl φFun.F
171 170 adantr φnFun.F
172 7 fdmd φdom.F=
173 172 eqcomd φ=dom.F
174 173 adantr φn=dom.F
175 129 174 eleqtrd φnndom.F
176 fvco Fun.Fndom.Fvol.Fn=vol.Fn
177 171 175 176 syl2anc φnvol.Fn=vol.Fn
178 fnfun .GFnFun.G
179 31 178 syl φFun.G
180 179 adantr φnFun.G
181 30 fdmd φdom.G=
182 181 eqcomd φ=dom.G
183 182 adantr φn=dom.G
184 129 183 eleqtrd φnndom.G
185 fvco Fun.Gndom.Gvol.Gn=vol.Gn
186 180 184 185 syl2anc φnvol.Gn=vol.Gn
187 168 177 186 3eqtr4d φnvol.Fn=vol.Gn
188 144 163 187 eqfnfvd φvol.F=vol.G
189 125 188 jca φran.F=ran.Gvol.F=vol.G