Metamath Proof Explorer


Theorem rnelfmlem

Description: Lemma for rnelfm . (Contributed by Jeff Hankins, 14-Nov-2009)

Ref Expression
Assertion rnelfmlem YALFilXF:YXranFLranxLF-1xfBasY

Proof

Step Hyp Ref Expression
1 simpl1 YALFilXF:YXranFLYA
2 cnvimass F-1xdomF
3 simpl3 YALFilXF:YXranFLF:YX
4 2 3 fssdm YALFilXF:YXranFLF-1xY
5 1 4 sselpwd YALFilXF:YXranFLF-1x𝒫Y
6 5 adantr YALFilXF:YXranFLxLF-1x𝒫Y
7 6 fmpttd YALFilXF:YXranFLxLF-1x:L𝒫Y
8 7 frnd YALFilXF:YXranFLranxLF-1x𝒫Y
9 filtop LFilXXL
10 9 3ad2ant2 YALFilXF:YXXL
11 10 adantr YALFilXF:YXranFLXL
12 fimacnv F:YXF-1X=Y
13 12 eqcomd F:YXY=F-1X
14 13 3ad2ant3 YALFilXF:YXY=F-1X
15 14 adantr YALFilXF:YXranFLY=F-1X
16 imaeq2 x=XF-1x=F-1X
17 16 rspceeqv XLY=F-1XxLY=F-1x
18 11 15 17 syl2anc YALFilXF:YXranFLxLY=F-1x
19 eqid xLF-1x=xLF-1x
20 19 elrnmpt YAYranxLF-1xxLY=F-1x
21 20 3ad2ant1 YALFilXF:YXYranxLF-1xxLY=F-1x
22 21 adantr YALFilXF:YXranFLYranxLF-1xxLY=F-1x
23 18 22 mpbird YALFilXF:YXranFLYranxLF-1x
24 23 ne0d YALFilXF:YXranFLranxLF-1x
25 0nelfil LFilX¬L
26 25 3ad2ant2 YALFilXF:YX¬L
27 26 adantr YALFilXF:YXranFL¬L
28 0ex V
29 19 elrnmpt VranxLF-1xxL=F-1x
30 28 29 ax-mp ranxLF-1xxL=F-1x
31 ffn F:YXFFnY
32 fvelrnb FFnYyranFzYFz=y
33 31 32 syl F:YXyranFzYFz=y
34 33 3ad2ant3 YALFilXF:YXyranFzYFz=y
35 34 ad2antrr YALFilXF:YXranFLxLyxyranFzYFz=y
36 eleq1 Fz=yFzxyx
37 36 biimparc yxFz=yFzx
38 37 ad2ant2l xLyxzYFz=yFzx
39 38 adantll YALFilXF:YXranFLxLyxzYFz=yFzx
40 ffun F:YXFunF
41 40 3ad2ant3 YALFilXF:YXFunF
42 41 ad3antrrr YALFilXF:YXranFLxLyxzYFz=yFunF
43 fdm F:YXdomF=Y
44 43 eleq2d F:YXzdomFzY
45 44 biimpar F:YXzYzdomF
46 45 3ad2antl3 YALFilXF:YXzYzdomF
47 46 adantlr YALFilXF:YXranFLzYzdomF
48 47 ad2ant2r YALFilXF:YXranFLxLyxzYFz=yzdomF
49 fvimacnv FunFzdomFFzxzF-1x
50 42 48 49 syl2anc YALFilXF:YXranFLxLyxzYFz=yFzxzF-1x
51 39 50 mpbid YALFilXF:YXranFLxLyxzYFz=yzF-1x
52 n0i zF-1x¬F-1x=
53 eqcom F-1x==F-1x
54 52 53 sylnib zF-1x¬=F-1x
55 51 54 syl YALFilXF:YXranFLxLyxzYFz=y¬=F-1x
56 55 rexlimdvaa YALFilXF:YXranFLxLyxzYFz=y¬=F-1x
57 35 56 sylbid YALFilXF:YXranFLxLyxyranF¬=F-1x
58 57 con2d YALFilXF:YXranFLxLyx=F-1x¬yranF
59 58 expr YALFilXF:YXranFLxLyx=F-1x¬yranF
60 59 com23 YALFilXF:YXranFLxL=F-1xyx¬yranF
61 60 impr YALFilXF:YXranFLxL=F-1xyx¬yranF
62 61 alrimiv YALFilXF:YXranFLxL=F-1xyyx¬yranF
63 imnan yx¬yranF¬yxyranF
64 elin yxranFyxyranF
65 63 64 xchbinxr yx¬yranF¬yxranF
66 65 albii yyx¬yranFy¬yxranF
67 eq0 xranF=y¬yxranF
68 eqcom xranF==xranF
69 66 67 68 3bitr2i yyx¬yranF=xranF
70 62 69 sylib YALFilXF:YXranFLxL=F-1x=xranF
71 simpll2 YALFilXF:YXranFLxL=F-1xLFilX
72 simprl YALFilXF:YXranFLxL=F-1xxL
73 simplr YALFilXF:YXranFLxL=F-1xranFL
74 filin LFilXxLranFLxranFL
75 71 72 73 74 syl3anc YALFilXF:YXranFLxL=F-1xxranFL
76 70 75 eqeltrd YALFilXF:YXranFLxL=F-1xL
77 76 rexlimdvaa YALFilXF:YXranFLxL=F-1xL
78 30 77 biimtrid YALFilXF:YXranFLranxLF-1xL
79 27 78 mtod YALFilXF:YXranFL¬ranxLF-1x
80 df-nel ranxLF-1x¬ranxLF-1x
81 79 80 sylibr YALFilXF:YXranFLranxLF-1x
82 19 elrnmpt rVrranxLF-1xxLr=F-1x
83 82 elv rranxLF-1xxLr=F-1x
84 imaeq2 x=uF-1x=F-1u
85 84 eqeq2d x=ur=F-1xr=F-1u
86 85 cbvrexvw xLr=F-1xuLr=F-1u
87 83 86 bitri rranxLF-1xuLr=F-1u
88 19 elrnmpt sVsranxLF-1xxLs=F-1x
89 88 elv sranxLF-1xxLs=F-1x
90 imaeq2 x=vF-1x=F-1v
91 90 eqeq2d x=vs=F-1xs=F-1v
92 91 cbvrexvw xLs=F-1xvLs=F-1v
93 89 92 bitri sranxLF-1xvLs=F-1v
94 87 93 anbi12i rranxLF-1xsranxLF-1xuLr=F-1uvLs=F-1v
95 reeanv uLvLr=F-1us=F-1vuLr=F-1uvLs=F-1v
96 94 95 bitr4i rranxLF-1xsranxLF-1xuLvLr=F-1us=F-1v
97 filin LFilXuLvLuvL
98 97 3expb LFilXuLvLuvL
99 98 adantlr LFilXF:YXuLvLuvL
100 eqidd LFilXF:YXuLvLF-1uv=F-1uv
101 imaeq2 x=uvF-1x=F-1uv
102 101 rspceeqv uvLF-1uv=F-1uvxLF-1uv=F-1x
103 99 100 102 syl2anc LFilXF:YXuLvLxLF-1uv=F-1x
104 103 3adantl1 YALFilXF:YXuLvLxLF-1uv=F-1x
105 104 ad2ant2r YALFilXF:YXranFLuLvLr=F-1us=F-1vxLF-1uv=F-1x
106 simpll1 YALFilXF:YXranFLuLvLr=F-1us=F-1vYA
107 cnvimass F-1uvdomF
108 107 43 sseqtrid F:YXF-1uvY
109 108 3ad2ant3 YALFilXF:YXF-1uvY
110 109 ad2antrr YALFilXF:YXranFLuLvLr=F-1us=F-1vF-1uvY
111 106 110 ssexd YALFilXF:YXranFLuLvLr=F-1us=F-1vF-1uvV
112 19 elrnmpt F-1uvVF-1uvranxLF-1xxLF-1uv=F-1x
113 111 112 syl YALFilXF:YXranFLuLvLr=F-1us=F-1vF-1uvranxLF-1xxLF-1uv=F-1x
114 105 113 mpbird YALFilXF:YXranFLuLvLr=F-1us=F-1vF-1uvranxLF-1x
115 simprrl YALFilXF:YXranFLuLvLr=F-1us=F-1vr=F-1u
116 simprrr YALFilXF:YXranFLuLvLr=F-1us=F-1vs=F-1v
117 115 116 ineq12d YALFilXF:YXranFLuLvLr=F-1us=F-1vrs=F-1uF-1v
118 funcnvcnv FunFFunF-1-1
119 imain FunF-1-1F-1uv=F-1uF-1v
120 40 118 119 3syl F:YXF-1uv=F-1uF-1v
121 120 3ad2ant3 YALFilXF:YXF-1uv=F-1uF-1v
122 121 ad2antrr YALFilXF:YXranFLuLvLr=F-1us=F-1vF-1uv=F-1uF-1v
123 117 122 eqtr4d YALFilXF:YXranFLuLvLr=F-1us=F-1vrs=F-1uv
124 eqimss2 rs=F-1uvF-1uvrs
125 123 124 syl YALFilXF:YXranFLuLvLr=F-1us=F-1vF-1uvrs
126 sseq1 t=F-1uvtrsF-1uvrs
127 126 rspcev F-1uvranxLF-1xF-1uvrstranxLF-1xtrs
128 114 125 127 syl2anc YALFilXF:YXranFLuLvLr=F-1us=F-1vtranxLF-1xtrs
129 128 exp32 YALFilXF:YXranFLuLvLr=F-1us=F-1vtranxLF-1xtrs
130 129 rexlimdvv YALFilXF:YXranFLuLvLr=F-1us=F-1vtranxLF-1xtrs
131 96 130 biimtrid YALFilXF:YXranFLrranxLF-1xsranxLF-1xtranxLF-1xtrs
132 131 ralrimivv YALFilXF:YXranFLrranxLF-1xsranxLF-1xtranxLF-1xtrs
133 24 81 132 3jca YALFilXF:YXranFLranxLF-1xranxLF-1xrranxLF-1xsranxLF-1xtranxLF-1xtrs
134 isfbas2 YAranxLF-1xfBasYranxLF-1x𝒫YranxLF-1xranxLF-1xrranxLF-1xsranxLF-1xtranxLF-1xtrs
135 1 134 syl YALFilXF:YXranFLranxLF-1xfBasYranxLF-1x𝒫YranxLF-1xranxLF-1xrranxLF-1xsranxLF-1xtranxLF-1xtrs
136 8 133 135 mpbir2and YALFilXF:YXranFLranxLF-1xfBasY