Database
BASIC TOPOLOGY
Filters and filter bases
Filter limits
rnelfmlem
Next ⟩
rnelfm
Metamath Proof Explorer
Ascii
Unicode
Theorem
rnelfmlem
Description:
Lemma for
rnelfm
.
(Contributed by
Jeff Hankins
, 14-Nov-2009)
Ref
Expression
Assertion
rnelfmlem
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
ran
x
∈
L
⟼
F
-1
x
∈
fBas
Y
Proof
Step
Hyp
Ref
Expression
1
simpl1
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
Y
∈
A
2
cnvimass
⊢
F
-1
x
⊆
dom
F
3
simpl3
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
F
:
Y
⟶
X
4
2
3
fssdm
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
F
-1
x
⊆
Y
5
1
4
sselpwd
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
F
-1
x
∈
𝒫
Y
6
5
adantr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
→
F
-1
x
∈
𝒫
Y
7
6
fmpttd
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
x
∈
L
⟼
F
-1
x
:
L
⟶
𝒫
Y
8
7
frnd
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
ran
x
∈
L
⟼
F
-1
x
⊆
𝒫
Y
9
filtop
⊢
L
∈
Fil
X
→
X
∈
L
10
9
3ad2ant2
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
→
X
∈
L
11
10
adantr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
X
∈
L
12
fimacnv
⊢
F
:
Y
⟶
X
→
F
-1
X
=
Y
13
12
eqcomd
⊢
F
:
Y
⟶
X
→
Y
=
F
-1
X
14
13
3ad2ant3
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
→
Y
=
F
-1
X
15
14
adantr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
Y
=
F
-1
X
16
imaeq2
⊢
x
=
X
→
F
-1
x
=
F
-1
X
17
16
rspceeqv
⊢
X
∈
L
∧
Y
=
F
-1
X
→
∃
x
∈
L
Y
=
F
-1
x
18
11
15
17
syl2anc
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
∃
x
∈
L
Y
=
F
-1
x
19
eqid
⊢
x
∈
L
⟼
F
-1
x
=
x
∈
L
⟼
F
-1
x
20
19
elrnmpt
⊢
Y
∈
A
→
Y
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
x
∈
L
Y
=
F
-1
x
21
20
3ad2ant1
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
→
Y
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
x
∈
L
Y
=
F
-1
x
22
21
adantr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
Y
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
x
∈
L
Y
=
F
-1
x
23
18
22
mpbird
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
Y
∈
ran
x
∈
L
⟼
F
-1
x
24
23
ne0d
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
ran
x
∈
L
⟼
F
-1
x
≠
∅
25
0nelfil
⊢
L
∈
Fil
X
→
¬
∅
∈
L
26
25
3ad2ant2
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
→
¬
∅
∈
L
27
26
adantr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
¬
∅
∈
L
28
0ex
⊢
∅
∈
V
29
19
elrnmpt
⊢
∅
∈
V
→
∅
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
x
∈
L
∅
=
F
-1
x
30
28
29
ax-mp
⊢
∅
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
x
∈
L
∅
=
F
-1
x
31
ffn
⊢
F
:
Y
⟶
X
→
F
Fn
Y
32
fvelrnb
⊢
F
Fn
Y
→
y
∈
ran
F
↔
∃
z
∈
Y
F
z
=
y
33
31
32
syl
⊢
F
:
Y
⟶
X
→
y
∈
ran
F
↔
∃
z
∈
Y
F
z
=
y
34
33
3ad2ant3
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
→
y
∈
ran
F
↔
∃
z
∈
Y
F
z
=
y
35
34
ad2antrr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
y
∈
x
→
y
∈
ran
F
↔
∃
z
∈
Y
F
z
=
y
36
eleq1
⊢
F
z
=
y
→
F
z
∈
x
↔
y
∈
x
37
36
biimparc
⊢
y
∈
x
∧
F
z
=
y
→
F
z
∈
x
38
37
ad2ant2l
⊢
x
∈
L
∧
y
∈
x
∧
z
∈
Y
∧
F
z
=
y
→
F
z
∈
x
39
38
adantll
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
y
∈
x
∧
z
∈
Y
∧
F
z
=
y
→
F
z
∈
x
40
ffun
⊢
F
:
Y
⟶
X
→
Fun
F
41
40
3ad2ant3
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
→
Fun
F
42
41
ad3antrrr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
y
∈
x
∧
z
∈
Y
∧
F
z
=
y
→
Fun
F
43
fdm
⊢
F
:
Y
⟶
X
→
dom
F
=
Y
44
43
eleq2d
⊢
F
:
Y
⟶
X
→
z
∈
dom
F
↔
z
∈
Y
45
44
biimpar
⊢
F
:
Y
⟶
X
∧
z
∈
Y
→
z
∈
dom
F
46
45
3ad2antl3
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
z
∈
Y
→
z
∈
dom
F
47
46
adantlr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
z
∈
Y
→
z
∈
dom
F
48
47
ad2ant2r
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
y
∈
x
∧
z
∈
Y
∧
F
z
=
y
→
z
∈
dom
F
49
fvimacnv
⊢
Fun
F
∧
z
∈
dom
F
→
F
z
∈
x
↔
z
∈
F
-1
x
50
42
48
49
syl2anc
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
y
∈
x
∧
z
∈
Y
∧
F
z
=
y
→
F
z
∈
x
↔
z
∈
F
-1
x
51
39
50
mpbid
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
y
∈
x
∧
z
∈
Y
∧
F
z
=
y
→
z
∈
F
-1
x
52
n0i
⊢
z
∈
F
-1
x
→
¬
F
-1
x
=
∅
53
eqcom
⊢
F
-1
x
=
∅
↔
∅
=
F
-1
x
54
52
53
sylnib
⊢
z
∈
F
-1
x
→
¬
∅
=
F
-1
x
55
51
54
syl
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
y
∈
x
∧
z
∈
Y
∧
F
z
=
y
→
¬
∅
=
F
-1
x
56
55
rexlimdvaa
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
y
∈
x
→
∃
z
∈
Y
F
z
=
y
→
¬
∅
=
F
-1
x
57
35
56
sylbid
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
y
∈
x
→
y
∈
ran
F
→
¬
∅
=
F
-1
x
58
57
con2d
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
y
∈
x
→
∅
=
F
-1
x
→
¬
y
∈
ran
F
59
58
expr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
→
y
∈
x
→
∅
=
F
-1
x
→
¬
y
∈
ran
F
60
59
com23
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
→
∅
=
F
-1
x
→
y
∈
x
→
¬
y
∈
ran
F
61
60
impr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
∅
=
F
-1
x
→
y
∈
x
→
¬
y
∈
ran
F
62
61
alrimiv
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
∅
=
F
-1
x
→
∀
y
y
∈
x
→
¬
y
∈
ran
F
63
imnan
⊢
y
∈
x
→
¬
y
∈
ran
F
↔
¬
y
∈
x
∧
y
∈
ran
F
64
elin
⊢
y
∈
x
∩
ran
F
↔
y
∈
x
∧
y
∈
ran
F
65
63
64
xchbinxr
⊢
y
∈
x
→
¬
y
∈
ran
F
↔
¬
y
∈
x
∩
ran
F
66
65
albii
⊢
∀
y
y
∈
x
→
¬
y
∈
ran
F
↔
∀
y
¬
y
∈
x
∩
ran
F
67
eq0
⊢
x
∩
ran
F
=
∅
↔
∀
y
¬
y
∈
x
∩
ran
F
68
eqcom
⊢
x
∩
ran
F
=
∅
↔
∅
=
x
∩
ran
F
69
66
67
68
3bitr2i
⊢
∀
y
y
∈
x
→
¬
y
∈
ran
F
↔
∅
=
x
∩
ran
F
70
62
69
sylib
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
∅
=
F
-1
x
→
∅
=
x
∩
ran
F
71
simpll2
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
∅
=
F
-1
x
→
L
∈
Fil
X
72
simprl
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
∅
=
F
-1
x
→
x
∈
L
73
simplr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
∅
=
F
-1
x
→
ran
F
∈
L
74
filin
⊢
L
∈
Fil
X
∧
x
∈
L
∧
ran
F
∈
L
→
x
∩
ran
F
∈
L
75
71
72
73
74
syl3anc
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
∅
=
F
-1
x
→
x
∩
ran
F
∈
L
76
70
75
eqeltrd
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
x
∈
L
∧
∅
=
F
-1
x
→
∅
∈
L
77
76
rexlimdvaa
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
∃
x
∈
L
∅
=
F
-1
x
→
∅
∈
L
78
30
77
biimtrid
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
∅
∈
ran
x
∈
L
⟼
F
-1
x
→
∅
∈
L
79
27
78
mtod
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
¬
∅
∈
ran
x
∈
L
⟼
F
-1
x
80
df-nel
⊢
∅
∉
ran
x
∈
L
⟼
F
-1
x
↔
¬
∅
∈
ran
x
∈
L
⟼
F
-1
x
81
79
80
sylibr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
∅
∉
ran
x
∈
L
⟼
F
-1
x
82
19
elrnmpt
⊢
r
∈
V
→
r
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
x
∈
L
r
=
F
-1
x
83
82
elv
⊢
r
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
x
∈
L
r
=
F
-1
x
84
imaeq2
⊢
x
=
u
→
F
-1
x
=
F
-1
u
85
84
eqeq2d
⊢
x
=
u
→
r
=
F
-1
x
↔
r
=
F
-1
u
86
85
cbvrexvw
⊢
∃
x
∈
L
r
=
F
-1
x
↔
∃
u
∈
L
r
=
F
-1
u
87
83
86
bitri
⊢
r
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
u
∈
L
r
=
F
-1
u
88
19
elrnmpt
⊢
s
∈
V
→
s
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
x
∈
L
s
=
F
-1
x
89
88
elv
⊢
s
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
x
∈
L
s
=
F
-1
x
90
imaeq2
⊢
x
=
v
→
F
-1
x
=
F
-1
v
91
90
eqeq2d
⊢
x
=
v
→
s
=
F
-1
x
↔
s
=
F
-1
v
92
91
cbvrexvw
⊢
∃
x
∈
L
s
=
F
-1
x
↔
∃
v
∈
L
s
=
F
-1
v
93
89
92
bitri
⊢
s
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
v
∈
L
s
=
F
-1
v
94
87
93
anbi12i
⊢
r
∈
ran
x
∈
L
⟼
F
-1
x
∧
s
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
u
∈
L
r
=
F
-1
u
∧
∃
v
∈
L
s
=
F
-1
v
95
reeanv
⊢
∃
u
∈
L
∃
v
∈
L
r
=
F
-1
u
∧
s
=
F
-1
v
↔
∃
u
∈
L
r
=
F
-1
u
∧
∃
v
∈
L
s
=
F
-1
v
96
94
95
bitr4i
⊢
r
∈
ran
x
∈
L
⟼
F
-1
x
∧
s
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
u
∈
L
∃
v
∈
L
r
=
F
-1
u
∧
s
=
F
-1
v
97
filin
⊢
L
∈
Fil
X
∧
u
∈
L
∧
v
∈
L
→
u
∩
v
∈
L
98
97
3expb
⊢
L
∈
Fil
X
∧
u
∈
L
∧
v
∈
L
→
u
∩
v
∈
L
99
98
adantlr
⊢
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
u
∈
L
∧
v
∈
L
→
u
∩
v
∈
L
100
eqidd
⊢
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
u
∈
L
∧
v
∈
L
→
F
-1
u
∩
v
=
F
-1
u
∩
v
101
imaeq2
⊢
x
=
u
∩
v
→
F
-1
x
=
F
-1
u
∩
v
102
101
rspceeqv
⊢
u
∩
v
∈
L
∧
F
-1
u
∩
v
=
F
-1
u
∩
v
→
∃
x
∈
L
F
-1
u
∩
v
=
F
-1
x
103
99
100
102
syl2anc
⊢
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
u
∈
L
∧
v
∈
L
→
∃
x
∈
L
F
-1
u
∩
v
=
F
-1
x
104
103
3adantl1
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
u
∈
L
∧
v
∈
L
→
∃
x
∈
L
F
-1
u
∩
v
=
F
-1
x
105
104
ad2ant2r
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
∃
x
∈
L
F
-1
u
∩
v
=
F
-1
x
106
simpll1
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
Y
∈
A
107
cnvimass
⊢
F
-1
u
∩
v
⊆
dom
F
108
107
43
sseqtrid
⊢
F
:
Y
⟶
X
→
F
-1
u
∩
v
⊆
Y
109
108
3ad2ant3
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
→
F
-1
u
∩
v
⊆
Y
110
109
ad2antrr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
F
-1
u
∩
v
⊆
Y
111
106
110
ssexd
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
F
-1
u
∩
v
∈
V
112
19
elrnmpt
⊢
F
-1
u
∩
v
∈
V
→
F
-1
u
∩
v
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
x
∈
L
F
-1
u
∩
v
=
F
-1
x
113
111
112
syl
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
F
-1
u
∩
v
∈
ran
x
∈
L
⟼
F
-1
x
↔
∃
x
∈
L
F
-1
u
∩
v
=
F
-1
x
114
105
113
mpbird
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
F
-1
u
∩
v
∈
ran
x
∈
L
⟼
F
-1
x
115
simprrl
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
r
=
F
-1
u
116
simprrr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
s
=
F
-1
v
117
115
116
ineq12d
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
r
∩
s
=
F
-1
u
∩
F
-1
v
118
funcnvcnv
⊢
Fun
F
→
Fun
F
-1
-1
119
imain
⊢
Fun
F
-1
-1
→
F
-1
u
∩
v
=
F
-1
u
∩
F
-1
v
120
40
118
119
3syl
⊢
F
:
Y
⟶
X
→
F
-1
u
∩
v
=
F
-1
u
∩
F
-1
v
121
120
3ad2ant3
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
→
F
-1
u
∩
v
=
F
-1
u
∩
F
-1
v
122
121
ad2antrr
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
F
-1
u
∩
v
=
F
-1
u
∩
F
-1
v
123
117
122
eqtr4d
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
r
∩
s
=
F
-1
u
∩
v
124
eqimss2
⊢
r
∩
s
=
F
-1
u
∩
v
→
F
-1
u
∩
v
⊆
r
∩
s
125
123
124
syl
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
F
-1
u
∩
v
⊆
r
∩
s
126
sseq1
⊢
t
=
F
-1
u
∩
v
→
t
⊆
r
∩
s
↔
F
-1
u
∩
v
⊆
r
∩
s
127
126
rspcev
⊢
F
-1
u
∩
v
∈
ran
x
∈
L
⟼
F
-1
x
∧
F
-1
u
∩
v
⊆
r
∩
s
→
∃
t
∈
ran
x
∈
L
⟼
F
-1
x
t
⊆
r
∩
s
128
114
125
127
syl2anc
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
∧
u
∈
L
∧
v
∈
L
∧
r
=
F
-1
u
∧
s
=
F
-1
v
→
∃
t
∈
ran
x
∈
L
⟼
F
-1
x
t
⊆
r
∩
s
129
128
exp32
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
u
∈
L
∧
v
∈
L
→
r
=
F
-1
u
∧
s
=
F
-1
v
→
∃
t
∈
ran
x
∈
L
⟼
F
-1
x
t
⊆
r
∩
s
130
129
rexlimdvv
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
∃
u
∈
L
∃
v
∈
L
r
=
F
-1
u
∧
s
=
F
-1
v
→
∃
t
∈
ran
x
∈
L
⟼
F
-1
x
t
⊆
r
∩
s
131
96
130
biimtrid
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
r
∈
ran
x
∈
L
⟼
F
-1
x
∧
s
∈
ran
x
∈
L
⟼
F
-1
x
→
∃
t
∈
ran
x
∈
L
⟼
F
-1
x
t
⊆
r
∩
s
132
131
ralrimivv
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
∀
r
∈
ran
x
∈
L
⟼
F
-1
x
∀
s
∈
ran
x
∈
L
⟼
F
-1
x
∃
t
∈
ran
x
∈
L
⟼
F
-1
x
t
⊆
r
∩
s
133
24
81
132
3jca
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
ran
x
∈
L
⟼
F
-1
x
≠
∅
∧
∅
∉
ran
x
∈
L
⟼
F
-1
x
∧
∀
r
∈
ran
x
∈
L
⟼
F
-1
x
∀
s
∈
ran
x
∈
L
⟼
F
-1
x
∃
t
∈
ran
x
∈
L
⟼
F
-1
x
t
⊆
r
∩
s
134
isfbas2
⊢
Y
∈
A
→
ran
x
∈
L
⟼
F
-1
x
∈
fBas
Y
↔
ran
x
∈
L
⟼
F
-1
x
⊆
𝒫
Y
∧
ran
x
∈
L
⟼
F
-1
x
≠
∅
∧
∅
∉
ran
x
∈
L
⟼
F
-1
x
∧
∀
r
∈
ran
x
∈
L
⟼
F
-1
x
∀
s
∈
ran
x
∈
L
⟼
F
-1
x
∃
t
∈
ran
x
∈
L
⟼
F
-1
x
t
⊆
r
∩
s
135
1
134
syl
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
ran
x
∈
L
⟼
F
-1
x
∈
fBas
Y
↔
ran
x
∈
L
⟼
F
-1
x
⊆
𝒫
Y
∧
ran
x
∈
L
⟼
F
-1
x
≠
∅
∧
∅
∉
ran
x
∈
L
⟼
F
-1
x
∧
∀
r
∈
ran
x
∈
L
⟼
F
-1
x
∀
s
∈
ran
x
∈
L
⟼
F
-1
x
∃
t
∈
ran
x
∈
L
⟼
F
-1
x
t
⊆
r
∩
s
136
8
133
135
mpbir2and
⊢
Y
∈
A
∧
L
∈
Fil
X
∧
F
:
Y
⟶
X
∧
ran
F
∈
L
→
ran
x
∈
L
⟼
F
-1
x
∈
fBas
Y