Metamath Proof Explorer


Theorem sge0fodjrnlem

Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0fodjrnlem.k k φ
sge0fodjrnlem.n n φ
sge0fodjrnlem.bd k = G B = D
sge0fodjrnlem.c φ C V
sge0fodjrnlem.f φ F : C onto A
sge0fodjrnlem.dj φ Disj n C F n
sge0fodjrnlem.fng φ n C F n = G
sge0fodjrnlem.b φ k A B 0 +∞
sge0fodjrnlem.b0 φ k = B = 0
sge0fodjrnlem.z Z = F -1
Assertion sge0fodjrnlem φ sum^ k A B = sum^ n C D

Proof

Step Hyp Ref Expression
1 sge0fodjrnlem.k k φ
2 sge0fodjrnlem.n n φ
3 sge0fodjrnlem.bd k = G B = D
4 sge0fodjrnlem.c φ C V
5 sge0fodjrnlem.f φ F : C onto A
6 sge0fodjrnlem.dj φ Disj n C F n
7 sge0fodjrnlem.fng φ n C F n = G
8 sge0fodjrnlem.b φ k A B 0 +∞
9 sge0fodjrnlem.b0 φ k = B = 0
10 sge0fodjrnlem.z Z = F -1
11 fornex C V F : C onto A A V
12 4 5 11 sylc φ A V
13 difssd φ A A
14 simpl φ k A φ
15 13 sselda φ k A k A
16 14 15 8 syl2anc φ k A B 0 +∞
17 simpl φ k A A φ
18 dfin4 A = A A
19 18 eqcomi A A = A
20 inss2 A
21 19 20 eqsstri A A
22 id k A A k A A
23 21 22 sseldi k A A k
24 elsni k k =
25 23 24 syl k A A k =
26 25 adantl φ k A A k =
27 17 26 9 syl2anc φ k A A B = 0
28 1 12 13 16 27 sge0ss φ sum^ k A B = sum^ k A B
29 28 eqcomd φ sum^ k A B = sum^ k A B
30 difexg C V C Z V
31 4 30 syl φ C Z V
32 eqid n C F n = n C F n
33 fof F : C onto A F : C A
34 5 33 syl φ F : C A
35 34 ffvelrnda φ n C F n A
36 fveq2 m = n F m = F n
37 36 neeq1d m = n F m F n
38 37 cbvrabv m C | F m = n C | F n
39 36 cbvmptv m C F m = n C F n
40 39 rneqi ran m C F m = ran n C F n
41 40 difeq1i ran m C F m = ran n C F n
42 2 32 35 6 38 41 disjf1o φ n C F n m C | F m : m C | F m 1-1 onto ran m C F m
43 34 feqmptd φ F = n C F n
44 difssd φ C Z C
45 44 sselda φ n C Z n C
46 eldifi n C Z n C
47 46 adantr n C Z F n = n C
48 id F n = F n =
49 fvex F n V
50 49 elsn F n F n =
51 48 50 sylibr F n = F n
52 51 adantl n C Z F n = F n
53 47 52 jca n C Z F n = n C F n
54 53 adantll φ n C Z F n = n C F n
55 34 ffnd φ F Fn C
56 elpreima F Fn C n F -1 n C F n
57 55 56 syl φ n F -1 n C F n
58 57 ad2antrr φ n C Z F n = n F -1 n C F n
59 54 58 mpbird φ n C Z F n = n F -1
60 59 10 eleqtrrdi φ n C Z F n = n Z
61 eldifn n C Z ¬ n Z
62 61 ad2antlr φ n C Z F n = ¬ n Z
63 60 62 pm2.65da φ n C Z ¬ F n =
64 63 neqned φ n C Z F n
65 45 64 jca φ n C Z n C F n
66 37 elrab n m C | F m n C F n
67 65 66 sylibr φ n C Z n m C | F m
68 67 ex φ n C Z n m C | F m
69 66 simplbi n m C | F m n C
70 69 adantl φ n m C | F m n C
71 10 eleq2i n Z n F -1
72 71 biimpi n Z n F -1
73 72 adantl φ n Z n F -1
74 57 adantr φ n Z n F -1 n C F n
75 73 74 mpbid φ n Z n C F n
76 75 simprd φ n Z F n
77 elsni F n F n =
78 76 77 syl φ n Z F n =
79 78 adantlr φ n m C | F m n Z F n =
80 66 simprbi n m C | F m F n
81 80 ad2antlr φ n m C | F m n Z F n
82 81 neneqd φ n m C | F m n Z ¬ F n =
83 79 82 pm2.65da φ n m C | F m ¬ n Z
84 70 83 eldifd φ n m C | F m n C Z
85 84 ex φ n m C | F m n C Z
86 2 85 ralrimi φ n m C | F m n C Z
87 dfss3 m C | F m C Z n m C | F m n C Z
88 86 87 sylibr φ m C | F m C Z
89 88 sseld φ n m C | F m n C Z
90 68 89 impbid φ n C Z n m C | F m
91 2 90 alrimi φ n n C Z n m C | F m
92 dfcleq C Z = m C | F m n n C Z n m C | F m
93 91 92 sylibr φ C Z = m C | F m
94 43 93 reseq12d φ F C Z = n C F n m C | F m
95 43 39 eqtr4di φ F = m C F m
96 95 eqcomd φ m C F m = F
97 96 rneqd φ ran m C F m = ran F
98 forn F : C onto A ran F = A
99 5 98 syl φ ran F = A
100 97 99 eqtr2d φ A = ran m C F m
101 100 difeq1d φ A = ran m C F m
102 94 93 101 f1oeq123d φ F C Z : C Z 1-1 onto A n C F n m C | F m : m C | F m 1-1 onto ran m C F m
103 42 102 mpbird φ F C Z : C Z 1-1 onto A
104 fvres n C Z F C Z n = F n
105 104 adantl φ n C Z F C Z n = F n
106 simpl φ n C Z φ
107 106 45 7 syl2anc φ n C Z F n = G
108 105 107 eqtrd φ n C Z F C Z n = G
109 1 2 3 31 103 108 16 sge0f1o φ sum^ k A B = sum^ n C Z D
110 7 eqcomd φ n C G = F n
111 110 35 eqeltrd φ n C G A
112 106 45 111 syl2anc φ n C Z G A
113 112 ex φ n C Z G A
114 113 imdistani φ n C Z φ G A
115 nfcv _ k G
116 nfv k G A
117 1 116 nfan k φ G A
118 nfv k D 0 +∞
119 117 118 nfim k φ G A D 0 +∞
120 eleq1 k = G k A G A
121 120 anbi2d k = G φ k A φ G A
122 3 eleq1d k = G B 0 +∞ D 0 +∞
123 121 122 imbi12d k = G φ k A B 0 +∞ φ G A D 0 +∞
124 115 119 123 8 vtoclgf G A φ G A D 0 +∞
125 112 114 124 sylc φ n C Z D 0 +∞
126 simpl φ n C C Z φ
127 eldifi n C C Z n C
128 127 adantl φ n C C Z n C
129 126 128 111 syl2anc φ n C C Z G A
130 dfin4 Z C = Z Z C
131 difss Z Z C Z
132 130 131 eqsstri Z C Z
133 inss2 C Z Z
134 id n C C Z n C C Z
135 dfin4 C Z = C C Z
136 135 eqcomi C C Z = C Z
137 134 136 eleqtrdi n C C Z n C Z
138 133 137 sseldi n C C Z n Z
139 138 127 elind n C C Z n Z C
140 132 139 sseldi n C C Z n Z
141 140 adantl φ n C C Z n Z
142 78 eqcomd φ n Z = F n
143 simpl φ n Z φ
144 75 simpld φ n Z n C
145 143 144 7 syl2anc φ n Z F n = G
146 142 145 eqtr2d φ n Z G =
147 126 141 146 syl2anc φ n C C Z G =
148 126 147 jca φ n C C Z φ G =
149 nfv k G =
150 1 149 nfan k φ G =
151 nfv k D = 0
152 150 151 nfim k φ G = D = 0
153 eqeq1 k = G k = G =
154 153 anbi2d k = G φ k = φ G =
155 3 eqeq1d k = G B = 0 D = 0
156 154 155 imbi12d k = G φ k = B = 0 φ G = D = 0
157 115 152 156 9 vtoclgf G A φ G = D = 0
158 129 148 157 sylc φ n C C Z D = 0
159 2 4 44 125 158 sge0ss φ sum^ n C Z D = sum^ n C D
160 29 109 159 3eqtrd φ sum^ k A B = sum^ n C D