Metamath Proof Explorer


Theorem ufileu

Description: If the ultrafilter containing a given filter is unique, the filter is an ultrafilter. (Contributed by Jeff Hankins, 3-Dec-2009) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion ufileu FFilXFUFilX∃!fUFilXFf

Proof

Step Hyp Ref Expression
1 ufilfil fUFilXfFilX
2 ufilmax FUFilXfFilXFfF=f
3 2 3expa FUFilXfFilXFfF=f
4 3 eqcomd FUFilXfFilXFff=F
5 4 ex FUFilXfFilXFff=F
6 1 5 sylan2 FUFilXfUFilXFff=F
7 6 ralrimiva FUFilXfUFilXFff=F
8 ssid FF
9 sseq2 f=FFfFF
10 9 eqreu FUFilXFFfUFilXFff=F∃!fUFilXFf
11 8 10 mp3an2 FUFilXfUFilXFff=F∃!fUFilXFf
12 7 11 mpdan FUFilX∃!fUFilXFf
13 reu6 ∃!fUFilXFfgUFilXfUFilXFff=g
14 ibibr f=gFff=gFff=g
15 14 pm5.74ri f=gFfFff=g
16 sseq2 f=gFfFg
17 15 16 bitr3d f=gFff=gFg
18 17 rspcva gUFilXfUFilXFff=gFg
19 18 adantll FFilXgUFilXfUFilXFff=gFg
20 ufilfil gUFilXgFilX
21 filelss gFilXxgxX
22 21 ex gFilXxgxX
23 20 22 syl gUFilXxgxX
24 23 ad2antlr FFilXgUFilXfUFilXFff=gxgxX
25 filsspw FFilXF𝒫X
26 25 ad2antrr FFilXgUFilXxX¬xFF𝒫X
27 difss XxX
28 filtop FFilXXF
29 28 ad2antrr FFilXgUFilXxX¬xFXF
30 29 difexd FFilXgUFilXxX¬xFXxV
31 elpwg XxVXx𝒫XXxX
32 30 31 syl FFilXgUFilXxX¬xFXx𝒫XXxX
33 27 32 mpbiri FFilXgUFilXxX¬xFXx𝒫X
34 33 snssd FFilXgUFilXxX¬xFXx𝒫X
35 26 34 unssd FFilXgUFilXxX¬xFFXx𝒫X
36 ssun1 FFXx
37 filn0 FFilXF
38 37 ad2antrr FFilXgUFilXxX¬xFF
39 ssn0 FFXxFFXx
40 36 38 39 sylancr FFilXgUFilXxX¬xFFXx
41 filelss FFilXfFfX
42 41 ad2ant2rl FFilXgUFilXxXfFfX
43 df-ss fXfX=f
44 42 43 sylib FFilXgUFilXxXfFfX=f
45 44 sseq1d FFilXgUFilXxXfFfXxfx
46 filss FFilXfFxXfxxF
47 46 3exp2 FFilXfFxXfxxF
48 47 impcomd FFilXxXfFfxxF
49 48 adantr FFilXgUFilXxXfFfxxF
50 49 imp FFilXgUFilXxXfFfxxF
51 45 50 sylbid FFilXgUFilXxXfFfXxxF
52 51 con3d FFilXgUFilXxXfF¬xF¬fXx
53 52 expr FFilXgUFilXxXfF¬xF¬fXx
54 53 com23 FFilXgUFilXxX¬xFfF¬fXx
55 54 impr FFilXgUFilXxX¬xFfF¬fXx
56 55 imp FFilXgUFilXxX¬xFfF¬fXx
57 ineq2 g=Xxfg=fXx
58 57 neeq1d g=XxfgfXx
59 58 ralsng XxVgXxfgfXx
60 inssdif0 fXxfXx=
61 60 necon3bbii ¬fXxfXx
62 59 61 bitr4di XxVgXxfg¬fXx
63 30 62 syl FFilXgUFilXxX¬xFgXxfg¬fXx
64 63 adantr FFilXgUFilXxX¬xFfFgXxfg¬fXx
65 56 64 mpbird FFilXgUFilXxX¬xFfFgXxfg
66 65 ralrimiva FFilXgUFilXxX¬xFfFgXxfg
67 filfbas FFilXFfBasX
68 67 ad2antrr FFilXgUFilXxX¬xFFfBasX
69 difssd FFilXgUFilXxX¬xFXxX
70 ssdif0 XxXx=
71 eqss x=XxXXx
72 71 simplbi2 xXXxx=X
73 eleq1 x=XxFXF
74 73 notbid x=X¬xF¬XF
75 74 biimpcd ¬xFx=X¬XF
76 72 75 sylan9 xX¬xFXx¬XF
77 76 adantl FFilXgUFilXxX¬xFXx¬XF
78 70 77 biimtrrid FFilXgUFilXxX¬xFXx=¬XF
79 78 necon2ad FFilXgUFilXxX¬xFXFXx
80 29 79 mpd FFilXgUFilXxX¬xFXx
81 snfbas XxXXxXFXxfBasX
82 69 80 29 81 syl3anc FFilXgUFilXxX¬xFXxfBasX
83 fbunfip FfBasXXxfBasX¬fiFXxfFgXxfg
84 68 82 83 syl2anc FFilXgUFilXxX¬xF¬fiFXxfFgXxfg
85 66 84 mpbird FFilXgUFilXxX¬xF¬fiFXx
86 fsubbas XFfiFXxfBasXFXx𝒫XFXx¬fiFXx
87 29 86 syl FFilXgUFilXxX¬xFfiFXxfBasXFXx𝒫XFXx¬fiFXx
88 35 40 85 87 mpbir3and FFilXgUFilXxX¬xFfiFXxfBasX
89 fgcl fiFXxfBasXXfilGenfiFXxFilX
90 88 89 syl FFilXgUFilXxX¬xFXfilGenfiFXxFilX
91 filssufil XfilGenfiFXxFilXfUFilXXfilGenfiFXxf
92 90 91 syl FFilXgUFilXxX¬xFfUFilXXfilGenfiFXxf
93 r19.29 fUFilXFff=gfUFilXXfilGenfiFXxffUFilXFff=gXfilGenfiFXxf
94 biimp Fff=gFff=g
95 simpll FFilXgUFilXxX¬xFFFilX
96 snex XxV
97 unexg FFilXXxVFXxV
98 95 96 97 sylancl FFilXgUFilXxX¬xFFXxV
99 ssfii FXxVFXxfiFXx
100 98 99 syl FFilXgUFilXxX¬xFFXxfiFXx
101 ssfg fiFXxfBasXfiFXxXfilGenfiFXx
102 88 101 syl FFilXgUFilXxX¬xFfiFXxXfilGenfiFXx
103 100 102 sstrd FFilXgUFilXxX¬xFFXxXfilGenfiFXx
104 103 unssad FFilXgUFilXxX¬xFFXfilGenfiFXx
105 sstr2 FXfilGenfiFXxXfilGenfiFXxfFf
106 104 105 syl FFilXgUFilXxX¬xFXfilGenfiFXxfFf
107 106 imim1d FFilXgUFilXxX¬xFFff=gXfilGenfiFXxff=g
108 sseq2 f=gXfilGenfiFXxfXfilGenfiFXxg
109 108 biimpcd XfilGenfiFXxff=gXfilGenfiFXxg
110 109 a2i XfilGenfiFXxff=gXfilGenfiFXxfXfilGenfiFXxg
111 94 107 110 syl56 FFilXgUFilXxX¬xFFff=gXfilGenfiFXxfXfilGenfiFXxg
112 111 impd FFilXgUFilXxX¬xFFff=gXfilGenfiFXxfXfilGenfiFXxg
113 112 rexlimdvw FFilXgUFilXxX¬xFfUFilXFff=gXfilGenfiFXxfXfilGenfiFXxg
114 93 113 syl5 FFilXgUFilXxX¬xFfUFilXFff=gfUFilXXfilGenfiFXxfXfilGenfiFXxg
115 92 114 mpan2d FFilXgUFilXxX¬xFfUFilXFff=gXfilGenfiFXxg
116 115 imp FFilXgUFilXxX¬xFfUFilXFff=gXfilGenfiFXxg
117 116 an32s FFilXgUFilXfUFilXFff=gxX¬xFXfilGenfiFXxg
118 snidg XxVXxXx
119 30 118 syl FFilXgUFilXxX¬xFXxXx
120 elun2 XxXxXxFXx
121 119 120 syl FFilXgUFilXxX¬xFXxFXx
122 103 121 sseldd FFilXgUFilXxX¬xFXxXfilGenfiFXx
123 122 adantlr FFilXgUFilXfUFilXFff=gxX¬xFXxXfilGenfiFXx
124 117 123 sseldd FFilXgUFilXfUFilXFff=gxX¬xFXxg
125 simpllr FFilXgUFilXfUFilXFff=gxX¬xFgUFilX
126 simprl FFilXgUFilXfUFilXFff=gxX¬xFxX
127 ufilb gUFilXxX¬xgXxg
128 125 126 127 syl2anc FFilXgUFilXfUFilXFff=gxX¬xF¬xgXxg
129 124 128 mpbird FFilXgUFilXfUFilXFff=gxX¬xF¬xg
130 129 expr FFilXgUFilXfUFilXFff=gxX¬xF¬xg
131 130 con4d FFilXgUFilXfUFilXFff=gxXxgxF
132 131 ex FFilXgUFilXfUFilXFff=gxXxgxF
133 132 com23 FFilXgUFilXfUFilXFff=gxgxXxF
134 24 133 mpdd FFilXgUFilXfUFilXFff=gxgxF
135 134 ssrdv FFilXgUFilXfUFilXFff=ggF
136 19 135 eqssd FFilXgUFilXfUFilXFff=gF=g
137 simplr FFilXgUFilXfUFilXFff=ggUFilX
138 136 137 eqeltrd FFilXgUFilXfUFilXFff=gFUFilX
139 138 rexlimdva2 FFilXgUFilXfUFilXFff=gFUFilX
140 13 139 biimtrid FFilX∃!fUFilXFfFUFilX
141 12 140 impbid2 FFilXFUFilX∃!fUFilXFf