Metamath Proof Explorer


Theorem volsup2

Description: The volume of A is the supremum of the sequence vol*( A i^i ( -u n , n ) ) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Assertion volsup2 AdomvolBB<volAnB<volAnn

Proof

Step Hyp Ref Expression
1 simp3 AdomvolBB<volAB<volA
2 rexr BB*
3 2 3ad2ant2 AdomvolBB<volAB*
4 iccssxr 0+∞*
5 volf vol:domvol0+∞
6 5 ffvelcdmi AdomvolvolA0+∞
7 4 6 sselid AdomvolvolA*
8 7 3ad2ant1 AdomvolBB<volAvolA*
9 xrltnle B*volA*B<volA¬volAB
10 3 8 9 syl2anc AdomvolBB<volAB<volA¬volAB
11 1 10 mpbid AdomvolBB<volA¬volAB
12 negeq m=nm=n
13 id m=nm=n
14 12 13 oveq12d m=nmm=nn
15 14 ineq2d m=nAmm=Ann
16 eqid mAmm=mAmm
17 ovex nnV
18 17 inex2 AnnV
19 15 16 18 fvmpt nmAmmn=Ann
20 19 iuneq2i nmAmmn=nAnn
21 iunin2 nAnn=Annn
22 20 21 eqtri nmAmmn=Annn
23 simpl1 AdomvolBB<volAnAdomvol
24 nnre nn
25 24 adantl AdomvolBB<volAnn
26 25 renegcld AdomvolBB<volAnn
27 iccmbl nnnndomvol
28 26 25 27 syl2anc AdomvolBB<volAnnndomvol
29 inmbl AdomvolnndomvolAnndomvol
30 23 28 29 syl2anc AdomvolBB<volAnAnndomvol
31 15 cbvmptv mAmm=nAnn
32 30 31 fmptd AdomvolBB<volAmAmm:domvol
33 32 ffnd AdomvolBB<volAmAmmFn
34 fniunfv mAmmFnnmAmmn=ranmAmm
35 33 34 syl AdomvolBB<volAnmAmmn=ranmAmm
36 mblss AdomvolA
37 36 3ad2ant1 AdomvolBB<volAA
38 37 sselda AdomvolBB<volAxAx
39 recn xx
40 39 abscld xx
41 arch xnx<n
42 40 41 syl xnx<n
43 ltle xnx<nxn
44 40 24 43 syl2an xnx<nxn
45 id xnxxnxnxxn
46 45 3expib xnxxnxnxxn
47 46 adantr xnnxxnxnxxn
48 absle xnxnnxxn
49 24 48 sylan2 xnxnnxxn
50 24 adantl xnn
51 50 renegcld xnn
52 elicc2 nnxnnxnxxn
53 51 50 52 syl2anc xnxnnxnxxn
54 47 49 53 3imtr4d xnxnxnn
55 44 54 syld xnx<nxnn
56 55 reximdva xnx<nnxnn
57 42 56 mpd xnxnn
58 38 57 syl AdomvolBB<volAxAnxnn
59 58 ex AdomvolBB<volAxAnxnn
60 eliun xnnnnxnn
61 59 60 syl6ibr AdomvolBB<volAxAxnnn
62 61 ssrdv AdomvolBB<volAAnnn
63 df-ss AnnnAnnn=A
64 62 63 sylib AdomvolBB<volAAnnn=A
65 22 35 64 3eqtr3a AdomvolBB<volAranmAmm=A
66 65 fveq2d AdomvolBB<volAvolranmAmm=volA
67 peano2re nn+1
68 25 67 syl AdomvolBB<volAnn+1
69 68 renegcld AdomvolBB<volAnn+1
70 25 lep1d AdomvolBB<volAnnn+1
71 25 68 lenegd AdomvolBB<volAnnn+1n+1n
72 70 71 mpbid AdomvolBB<volAnn+1n
73 iccss n+1n+1n+1nnn+1nnn+1n+1
74 69 68 72 70 73 syl22anc AdomvolBB<volAnnnn+1n+1
75 sslin nnn+1n+1AnnAn+1n+1
76 74 75 syl AdomvolBB<volAnAnnAn+1n+1
77 19 adantl AdomvolBB<volAnmAmmn=Ann
78 peano2nn nn+1
79 78 adantl AdomvolBB<volAnn+1
80 negeq m=n+1m=n+1
81 id m=n+1m=n+1
82 80 81 oveq12d m=n+1mm=n+1n+1
83 82 ineq2d m=n+1Amm=An+1n+1
84 ovex n+1n+1V
85 84 inex2 An+1n+1V
86 83 16 85 fvmpt n+1mAmmn+1=An+1n+1
87 79 86 syl AdomvolBB<volAnmAmmn+1=An+1n+1
88 76 77 87 3sstr4d AdomvolBB<volAnmAmmnmAmmn+1
89 88 ralrimiva AdomvolBB<volAnmAmmnmAmmn+1
90 volsup mAmm:domvolnmAmmnmAmmn+1volranmAmm=supvolranmAmm*<
91 32 89 90 syl2anc AdomvolBB<volAvolranmAmm=supvolranmAmm*<
92 66 91 eqtr3d AdomvolBB<volAvolA=supvolranmAmm*<
93 92 breq1d AdomvolBB<volAvolABsupvolranmAmm*<B
94 imassrn volranmAmmranvol
95 frn vol:domvol0+∞ranvol0+∞
96 5 95 ax-mp ranvol0+∞
97 96 4 sstri ranvol*
98 94 97 sstri volranmAmm*
99 supxrleub volranmAmm*B*supvolranmAmm*<BnvolranmAmmnB
100 98 3 99 sylancr AdomvolBB<volAsupvolranmAmm*<BnvolranmAmmnB
101 ffn vol:domvol0+∞volFndomvol
102 5 101 ax-mp volFndomvol
103 32 frnd AdomvolBB<volAranmAmmdomvol
104 breq1 n=volznBvolzB
105 104 ralima volFndomvolranmAmmdomvolnvolranmAmmnBzranmAmmvolzB
106 102 103 105 sylancr AdomvolBB<volAnvolranmAmmnBzranmAmmvolzB
107 fveq2 z=mAmmnvolz=volmAmmn
108 107 breq1d z=mAmmnvolzBvolmAmmnB
109 108 ralrn mAmmFnzranmAmmvolzBnvolmAmmnB
110 33 109 syl AdomvolBB<volAzranmAmmvolzBnvolmAmmnB
111 19 fveq2d nvolmAmmn=volAnn
112 111 breq1d nvolmAmmnBvolAnnB
113 112 ralbiia nvolmAmmnBnvolAnnB
114 110 113 bitrdi AdomvolBB<volAzranmAmmvolzBnvolAnnB
115 106 114 bitrd AdomvolBB<volAnvolranmAmmnBnvolAnnB
116 93 100 115 3bitrd AdomvolBB<volAvolABnvolAnnB
117 11 116 mtbid AdomvolBB<volA¬nvolAnnB
118 rexnal n¬volAnnB¬nvolAnnB
119 117 118 sylibr AdomvolBB<volAn¬volAnnB
120 3 adantr AdomvolBB<volAnB*
121 5 ffvelcdmi AnndomvolvolAnn0+∞
122 4 121 sselid AnndomvolvolAnn*
123 30 122 syl AdomvolBB<volAnvolAnn*
124 xrltnle B*volAnn*B<volAnn¬volAnnB
125 120 123 124 syl2anc AdomvolBB<volAnB<volAnn¬volAnnB
126 125 rexbidva AdomvolBB<volAnB<volAnnn¬volAnnB
127 119 126 mpbird AdomvolBB<volAnB<volAnn