Metamath Proof Explorer


Theorem 0ellimcdiv

Description: If the numerator converges to 0 and the denominator converges to a nonzero number, then the fraction converges to 0. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses 0ellimcdiv.f F=xAB
0ellimcdiv.g G=xAC
0ellimcdiv.h H=xABC
0ellimcdiv.b φxAB
0ellimcdiv.c φxAC0
0ellimcdiv.0limf φ0FlimE
0ellimcdiv.d φDGlimE
0ellimcdiv.dne0 φD0
Assertion 0ellimcdiv φ0HlimE

Proof

Step Hyp Ref Expression
1 0ellimcdiv.f F=xAB
2 0ellimcdiv.g G=xAC
3 0ellimcdiv.h H=xABC
4 0ellimcdiv.b φxAB
5 0ellimcdiv.c φxAC0
6 0ellimcdiv.0limf φ0FlimE
7 0ellimcdiv.d φDGlimE
8 0ellimcdiv.dne0 φD0
9 0cnd φ0
10 5 eldifad φxAC
11 10 2 fmptd φG:A
12 1 4 6 limcmptdm φA
13 limcrcl DGlimEG:domGdomGE
14 7 13 syl φG:domGdomGE
15 14 simp3d φE
16 11 12 15 ellimc3 φDGlimEDy+z+vAvEvE<zGvD<y
17 7 16 mpbid φDy+z+vAvEvE<zGvD<y
18 17 simprd φy+z+vAvEvE<zGvD<y
19 17 simpld φD
20 19 8 absrpcld φD+
21 20 rphalfcld φD2+
22 breq2 y=D2GvD<yGvD<D2
23 22 imbi2d y=D2vEvE<zGvD<yvEvE<zGvD<D2
24 23 rexralbidv y=D2z+vAvEvE<zGvD<yz+vAvEvE<zGvD<D2
25 24 rspccva y+z+vAvEvE<zGvD<yD2+z+vAvEvE<zGvD<D2
26 18 21 25 syl2anc φz+vAvEvE<zGvD<D2
27 simpl1l φz+vAvEvE<zGvD<D2vAvEvE<zφ
28 simpl3 φz+vAvEvE<zGvD<D2vAvEvE<zvA
29 simpr φz+vAvEvE<zGvD<D2vAvEvE<zvEvE<z
30 simpl2 φz+vAvEvE<zGvD<D2vAvEvE<zvAvEvE<zGvD<D2
31 28 29 30 mp2d φz+vAvEvE<zGvD<D2vAvEvE<zGvD<D2
32 20 rpcnd φD
33 32 2halvesd φD2+D2=D
34 33 eqcomd φD=D2+D2
35 34 oveq1d φDD2=D2+D2-D2
36 2cnd φ2
37 2ne0 20
38 37 a1i φ20
39 19 36 38 absdivd φD2=D2
40 2re 2
41 40 a1i φ2
42 0le2 02
43 42 a1i φ02
44 41 43 absidd φ2=2
45 44 oveq2d φD2=D2
46 39 45 eqtr2d φD2=D2
47 46 oveq2d φDD2=DD2
48 21 rpcnd φD2
49 48 48 pncand φD2+D2-D2=D2
50 35 47 49 3eqtr3rd φD2=DD2
51 50 3ad2ant1 φvAGvD<D2D2=DD2
52 46 eqcomd φD2=D2
53 52 3ad2ant1 φvAGvD<D2D2=D2
54 53 oveq2d φvAGvD<D2DD2=DD2
55 19 adantr φvAD
56 55 abscld φvAD
57 56 3adant3 φvAGvD<D2D
58 11 ffvelcdmda φvAGv
59 58 3adant3 φvAGvD<D2Gv
60 59 abscld φvAGvD<D2Gv
61 19 3ad2ant1 φvAGvD<D2D
62 61 59 subcld φvAGvD<D2DGv
63 62 abscld φvAGvD<D2DGv
64 60 63 readdcld φvAGvD<D2Gv+DGv
65 57 rehalfcld φvAGvD<D2D2
66 60 65 readdcld φvAGvD<D2Gv+D2
67 58 55 pncan3d φvAGv+D-Gv=D
68 67 eqcomd φvAD=Gv+D-Gv
69 68 fveq2d φvAD=Gv+D-Gv
70 55 58 subcld φvADGv
71 58 70 abstrid φvAGv+D-GvGv+DGv
72 69 71 eqbrtrd φvADGv+DGv
73 72 3adant3 φvAGvD<D2DGv+DGv
74 61 59 abssubd φvAGvD<D2DGv=GvD
75 simp3 φvAGvD<D2GvD<D2
76 74 75 eqbrtrd φvAGvD<D2DGv<D2
77 63 65 60 76 ltadd2dd φvAGvD<D2Gv+DGv<Gv+D2
78 57 64 66 73 77 lelttrd φvAGvD<D2D<Gv+D2
79 58 abscld φvAGv
80 79 3adant3 φvAGvD<D2Gv
81 57 65 80 ltsubaddd φvAGvD<D2DD2<GvD<Gv+D2
82 78 81 mpbird φvAGvD<D2DD2<Gv
83 54 82 eqbrtrd φvAGvD<D2DD2<Gv
84 51 83 eqbrtrd φvAGvD<D2D2<Gv
85 27 28 31 84 syl3anc φz+vAvEvE<zGvD<D2vAvEvE<zD2<Gv
86 85 3exp1 φz+vAvEvE<zGvD<D2vAvEvE<zD2<Gv
87 86 ralimdv2 φz+vAvEvE<zGvD<D2vAvEvE<zD2<Gv
88 87 reximdva φz+vAvEvE<zGvD<D2z+vAvEvE<zD2<Gv
89 26 88 mpd φz+vAvEvE<zD2<Gv
90 89 adantr φy+z+vAvEvE<zD2<Gv
91 simpr φy+y+
92 19 adantr φy+D
93 8 adantr φy+D0
94 92 93 absrpcld φy+D+
95 94 rphalfcld φy+D2+
96 91 95 rpmulcld φy+yD2+
97 96 ex φy+yD2+
98 97 imdistani φy+φyD2+
99 eleq1 w=yD2w+yD2+
100 99 anbi2d w=yD2φw+φyD2+
101 breq2 w=yD2Fv0<wFv0<yD2
102 101 imbi2d w=yD2vEvE<uFv0<wvEvE<uFv0<yD2
103 102 rexralbidv w=yD2u+vAvEvE<uFv0<wu+vAvEvE<uFv0<yD2
104 100 103 imbi12d w=yD2φw+u+vAvEvE<uFv0<wφyD2+u+vAvEvE<uFv0<yD2
105 4 1 fmptd φF:A
106 105 12 15 ellimc3 φ0FlimE0w+u+vAvEvE<uFv0<w
107 6 106 mpbid φ0w+u+vAvEvE<uFv0<w
108 107 simprd φw+u+vAvEvE<uFv0<w
109 108 r19.21bi φw+u+vAvEvE<uFv0<w
110 104 109 vtoclg yD2+φyD2+u+vAvEvE<uFv0<yD2
111 96 98 110 sylc φy+u+vAvEvE<uFv0<yD2
112 111 3ad2ant1 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2
113 simp12 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2z+
114 simp2 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2u+
115 113 114 ifcld φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2ifzuzu+
116 nfv vφy+
117 nfv vz+
118 nfra1 vvAvEvE<zD2<Gv
119 116 117 118 nf3an vφy+z+vAvEvE<zD2<Gv
120 nfv vu+
121 nfra1 vvAvEvE<uFv0<yD2
122 119 120 121 nf3an vφy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2
123 simp111 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuφy+
124 simp112 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuz+
125 simp12 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuu+
126 123 124 125 jca31 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuφy+z+u+
127 simp2 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvA
128 simp3l φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvE
129 126 127 128 jca31 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuφy+z+u+vAvE
130 12 adantr φy+A
131 130 3ad2ant1 φy+z+vAvEvE<zD2<GvA
132 131 3ad2ant1 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2A
133 132 3ad2ant1 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuA
134 133 127 sseldd φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuv
135 15 adantr φy+E
136 135 3ad2ant1 φy+z+vAvEvE<zD2<GvE
137 136 3ad2ant1 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2E
138 137 3ad2ant1 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuE
139 134 138 subcld φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvE
140 139 abscld φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvE
141 124 rpred φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuz
142 125 rpred φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuu
143 141 142 ifcld φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuifzuzu
144 simp3r φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvE<ifzuzu
145 min1 zuifzuzuz
146 141 142 145 syl2anc φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuifzuzuz
147 140 143 141 144 146 ltletrd φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvE<z
148 simp113 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvAvEvE<zD2<Gv
149 rspa vAvEvE<zD2<GvvAvEvE<zD2<Gv
150 148 127 149 syl2anc φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvEvE<zD2<Gv
151 128 147 150 mp2and φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuD2<Gv
152 simp13 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvAvEvE<uFv0<yD2
153 rspa vAvEvE<uFv0<yD2vAvEvE<uFv0<yD2
154 152 127 153 syl2anc φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvEvE<uFv0<yD2
155 min2 zuifzuzuu
156 141 142 155 syl2anc φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuifzuzuu
157 140 143 142 144 156 ltletrd φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvE<u
158 128 157 jca φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvEvE<u
159 123 simpld φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuφ
160 159 3ad2ant1 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvEvE<uFv0<yD2vEvE<uφ
161 simp12 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvEvE<uFv0<yD2vEvE<uvA
162 nfv xφvA
163 nfmpt1 _xxAB
164 1 163 nfcxfr _xF
165 nfcv _xv
166 164 165 nffv _xFv
167 166 nfel1 xFv
168 162 167 nfim xφvAFv
169 eleq1 x=vxAvA
170 169 anbi2d x=vφxAφvA
171 fveq2 x=vFx=Fv
172 171 eleq1d x=vFxFv
173 170 172 imbi12d x=vφxAFxφvAFv
174 simpr φxAxA
175 1 fvmpt2 xABFx=B
176 174 4 175 syl2anc φxAFx=B
177 176 4 eqeltrd φxAFx
178 168 173 177 chvarfv φvAFv
179 178 subid1d φvAFv0=Fv
180 179 eqcomd φvAFv=Fv0
181 180 fveq2d φvAFv=Fv0
182 160 161 181 syl2anc φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvEvE<uFv0<yD2vEvE<uFv=Fv0
183 simp3 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvEvE<uFv0<yD2vEvE<uvEvE<u
184 simp2 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvEvE<uFv0<yD2vEvE<uvEvE<uFv0<yD2
185 183 184 mpd φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvEvE<uFv0<yD2vEvE<uFv0<yD2
186 182 185 eqbrtrd φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuvEvE<uFv0<yD2vEvE<uFv<yD2
187 154 158 186 mpd3an23 φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuFv<yD2
188 simp-7l φy+z+u+vAvED2<GvFv<yD2φ
189 simp-4r φy+z+u+vAvED2<GvFv<yD2vA
190 eldifsni C0C0
191 5 190 syl φxAC0
192 4 10 191 divcld φxABC
193 192 3 fmptd φH:A
194 193 ffvelcdmda φvAHv
195 194 subid1d φvAHv0=Hv
196 nfmpt1 _xxABC
197 3 196 nfcxfr _xH
198 197 165 nffv _xHv
199 nfcv _x÷
200 nfmpt1 _xxAC
201 2 200 nfcxfr _xG
202 201 165 nffv _xGv
203 166 199 202 nfov _xFvGv
204 198 203 nfeq xHv=FvGv
205 162 204 nfim xφvAHv=FvGv
206 fveq2 x=vHx=Hv
207 fveq2 x=vGx=Gv
208 171 207 oveq12d x=vFxGx=FvGv
209 206 208 eqeq12d x=vHx=FxGxHv=FvGv
210 170 209 imbi12d x=vφxAHx=FxGxφvAHv=FvGv
211 3 fvmpt2 xABCHx=BC
212 174 192 211 syl2anc φxAHx=BC
213 176 eqcomd φxAB=Fx
214 2 fvmpt2 xAC0Gx=C
215 174 5 214 syl2anc φxAGx=C
216 215 eqcomd φxAC=Gx
217 213 216 oveq12d φxABC=FxGx
218 212 217 eqtrd φxAHx=FxGx
219 205 210 218 chvarfv φvAHv=FvGv
220 195 219 eqtrd φvAHv0=FvGv
221 220 fveq2d φvAHv0=FvGv
222 188 189 221 syl2anc φy+z+u+vAvED2<GvFv<yD2Hv0=FvGv
223 simp-6l φy+z+u+vAvED2<GvFv<yD2φy+
224 223 189 jca φy+z+u+vAvED2<GvFv<yD2φy+vA
225 simplr φy+z+u+vAvED2<GvFv<yD2D2<Gv
226 simpr φy+z+u+vAvED2<GvFv<yD2Fv<yD2
227 nfcv _x0
228 202 227 nfne xGv0
229 162 228 nfim xφvAGv0
230 207 neeq1d x=vGx0Gv0
231 170 230 imbi12d x=vφxAGx0φvAGv0
232 215 191 eqnetrd φxAGx0
233 229 231 232 chvarfv φvAGv0
234 178 58 233 absdivd φvAFvGv=FvGv
235 234 adantlr φy+vAFvGv=FvGv
236 235 ad2antrr φy+vAD2<GvFv<yD2FvGv=FvGv
237 178 abscld φvAFv
238 58 233 absne0d φvAGv0
239 237 79 238 redivcld φvAFvGv
240 239 adantlr φy+vAFvGv
241 240 ad2antrr φy+vAD2<GvFv<yD2FvGv
242 rpre y+y
243 242 ad2antlr φy+vAy
244 21 rpred φD2
245 244 ad2antrr φy+vAD2
246 243 245 remulcld φy+vAyD2
247 246 ad2antrr φy+vAD2<GvFv<yD2yD2
248 58 233 absrpcld φvAGv+
249 248 adantlr φy+vAGv+
250 249 ad2antrr φy+vAD2<GvFv<yD2Gv+
251 247 250 rerpdivcld φy+vAD2<GvFv<yD2yD2Gv
252 243 ad2antrr φy+vAD2<GvFv<yD2y
253 simp-4l φy+vAD2<GvFv<yD2φ
254 simpllr φy+vAD2<GvFv<yD2vA
255 253 254 237 syl2anc φy+vAD2<GvFv<yD2Fv
256 simpr φy+vAD2<GvFv<yD2Fv<yD2
257 255 247 250 256 ltdiv1dd φy+vAD2<GvFv<yD2FvGv<yD2Gv
258 243 recnd φy+vAy
259 48 ad2antrr φy+vAD2
260 249 rpcnd φy+vAGv
261 238 adantlr φy+vAGv0
262 258 259 260 261 divassd φy+vAyD2Gv=yD2Gv
263 262 adantr φy+vAD2<GvyD2Gv=yD2Gv
264 245 249 rerpdivcld φy+vAD2Gv
265 264 adantr φy+vAD2<GvD2Gv
266 1red φy+vAD2<Gv1
267 simpllr φy+vAD2<Gvy+
268 244 ad2antrr φvAD2<GvD2
269 1rp 1+
270 269 a1i φvAD2<Gv1+
271 248 adantr φvAD2<GvGv+
272 48 div1d φD21=D2
273 272 ad2antrr φvAD2<GvD21=D2
274 simpr φvAD2<GvD2<Gv
275 273 274 eqbrtrd φvAD2<GvD21<Gv
276 268 270 271 275 ltdiv23d φvAD2<GvD2Gv<1
277 276 adantllr φy+vAD2<GvD2Gv<1
278 265 266 267 277 ltmul2dd φy+vAD2<GvyD2Gv<y1
279 263 278 eqbrtrd φy+vAD2<GvyD2Gv<y1
280 258 mulridd φy+vAy1=y
281 280 adantr φy+vAD2<Gvy1=y
282 279 281 breqtrd φy+vAD2<GvyD2Gv<y
283 282 adantr φy+vAD2<GvFv<yD2yD2Gv<y
284 241 251 252 257 283 lttrd φy+vAD2<GvFv<yD2FvGv<y
285 236 284 eqbrtrd φy+vAD2<GvFv<yD2FvGv<y
286 224 225 226 285 syl21anc φy+z+u+vAvED2<GvFv<yD2FvGv<y
287 222 286 eqbrtrd φy+z+u+vAvED2<GvFv<yD2Hv0<y
288 129 151 187 287 syl21anc φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuHv0<y
289 288 3exp φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuHv0<y
290 122 289 ralrimi φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2vAvEvE<ifzuzuHv0<y
291 brimralrspcev ifzuzu+vAvEvE<ifzuzuHv0<yw+vAvEvE<wHv0<y
292 115 290 291 syl2anc φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2w+vAvEvE<wHv0<y
293 292 rexlimdv3a φy+z+vAvEvE<zD2<Gvu+vAvEvE<uFv0<yD2w+vAvEvE<wHv0<y
294 112 293 mpd φy+z+vAvEvE<zD2<Gvw+vAvEvE<wHv0<y
295 294 rexlimdv3a φy+z+vAvEvE<zD2<Gvw+vAvEvE<wHv0<y
296 90 295 mpd φy+w+vAvEvE<wHv0<y
297 296 ralrimiva φy+w+vAvEvE<wHv0<y
298 193 12 15 ellimc3 φ0HlimE0y+w+vAvEvE<wHv0<y
299 9 297 298 mpbir2and φ0HlimE