Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Liouville's approximation theorem
aalioulem3
Next ⟩
aalioulem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
aalioulem3
Description:
Lemma for
aaliou
.
(Contributed by
Stefan O'Rear
, 15-Nov-2014)
Ref
Expression
Hypotheses
aalioulem2.a
⊢
N
=
deg
F
aalioulem2.b
⊢
φ
→
F
∈
Poly
ℤ
aalioulem2.c
⊢
φ
→
N
∈
ℕ
aalioulem2.d
⊢
φ
→
A
∈
ℝ
aalioulem3.e
⊢
φ
→
F
A
=
0
Assertion
aalioulem3
⊢
φ
→
∃
x
∈
ℝ
+
∀
r
∈
ℝ
A
−
r
≤
1
→
x
F
r
≤
A
−
r
Proof
Step
Hyp
Ref
Expression
1
aalioulem2.a
⊢
N
=
deg
F
2
aalioulem2.b
⊢
φ
→
F
∈
Poly
ℤ
3
aalioulem2.c
⊢
φ
→
N
∈
ℕ
4
aalioulem2.d
⊢
φ
→
A
∈
ℝ
5
aalioulem3.e
⊢
φ
→
F
A
=
0
6
1re
⊢
1
∈
ℝ
7
resubcl
⊢
A
∈
ℝ
∧
1
∈
ℝ
→
A
−
1
∈
ℝ
8
4
6
7
sylancl
⊢
φ
→
A
−
1
∈
ℝ
9
peano2re
⊢
A
∈
ℝ
→
A
+
1
∈
ℝ
10
4
9
syl
⊢
φ
→
A
+
1
∈
ℝ
11
reelprrecn
⊢
ℝ
∈
ℝ
ℂ
12
ssid
⊢
ℂ
⊆
ℂ
13
fncpn
⊢
ℂ
⊆
ℂ
→
C
n
ℂ
Fn
ℕ
0
14
12
13
ax-mp
⊢
C
n
ℂ
Fn
ℕ
0
15
1nn0
⊢
1
∈
ℕ
0
16
fnfvelrn
⊢
C
n
ℂ
Fn
ℕ
0
∧
1
∈
ℕ
0
→
C
n
ℂ
1
∈
ran
C
n
ℂ
17
14
15
16
mp2an
⊢
C
n
ℂ
1
∈
ran
C
n
ℂ
18
intss1
⊢
C
n
ℂ
1
∈
ran
C
n
ℂ
→
⋂
ran
C
n
ℂ
⊆
C
n
ℂ
1
19
17
18
ax-mp
⊢
⋂
ran
C
n
ℂ
⊆
C
n
ℂ
1
20
plycpn
⊢
F
∈
Poly
ℤ
→
F
∈
⋂
ran
C
n
ℂ
21
2
20
syl
⊢
φ
→
F
∈
⋂
ran
C
n
ℂ
22
19
21
sselid
⊢
φ
→
F
∈
C
n
ℂ
1
23
cpnres
⊢
ℝ
∈
ℝ
ℂ
∧
F
∈
C
n
ℂ
1
→
F
↾
ℝ
∈
C
n
ℝ
1
24
11
22
23
sylancr
⊢
φ
→
F
↾
ℝ
∈
C
n
ℝ
1
25
df-ima
⊢
F
ℝ
=
ran
F
↾
ℝ
26
zssre
⊢
ℤ
⊆
ℝ
27
ax-resscn
⊢
ℝ
⊆
ℂ
28
plyss
⊢
ℤ
⊆
ℝ
∧
ℝ
⊆
ℂ
→
Poly
ℤ
⊆
Poly
ℝ
29
26
27
28
mp2an
⊢
Poly
ℤ
⊆
Poly
ℝ
30
29
2
sselid
⊢
φ
→
F
∈
Poly
ℝ
31
plyreres
⊢
F
∈
Poly
ℝ
→
F
↾
ℝ
:
ℝ
⟶
ℝ
32
30
31
syl
⊢
φ
→
F
↾
ℝ
:
ℝ
⟶
ℝ
33
32
frnd
⊢
φ
→
ran
F
↾
ℝ
⊆
ℝ
34
25
33
eqsstrid
⊢
φ
→
F
ℝ
⊆
ℝ
35
iccssre
⊢
A
−
1
∈
ℝ
∧
A
+
1
∈
ℝ
→
A
−
1
A
+
1
⊆
ℝ
36
8
10
35
syl2anc
⊢
φ
→
A
−
1
A
+
1
⊆
ℝ
37
36
27
sstrdi
⊢
φ
→
A
−
1
A
+
1
⊆
ℂ
38
plyf
⊢
F
∈
Poly
ℤ
→
F
:
ℂ
⟶
ℂ
39
2
38
syl
⊢
φ
→
F
:
ℂ
⟶
ℂ
40
39
fdmd
⊢
φ
→
dom
F
=
ℂ
41
37
40
sseqtrrd
⊢
φ
→
A
−
1
A
+
1
⊆
dom
F
42
8
10
24
34
41
c1lip3
⊢
φ
→
∃
a
∈
ℝ
∀
b
∈
A
−
1
A
+
1
∀
c
∈
A
−
1
A
+
1
F
c
−
F
b
≤
a
c
−
b
43
simp2
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
r
∈
ℝ
44
43
recnd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
r
∈
ℂ
45
4
adantr
⊢
φ
∧
a
∈
ℝ
→
A
∈
ℝ
46
45
3ad2ant1
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
A
∈
ℝ
47
46
recnd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
A
∈
ℂ
48
44
47
abssubd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
r
−
A
=
A
−
r
49
simp3
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
A
−
r
≤
1
50
48
49
eqbrtrd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
r
−
A
≤
1
51
1red
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
1
∈
ℝ
52
elicc4abs
⊢
A
∈
ℝ
∧
1
∈
ℝ
∧
r
∈
ℝ
→
r
∈
A
−
1
A
+
1
↔
r
−
A
≤
1
53
46
51
43
52
syl3anc
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
r
∈
A
−
1
A
+
1
↔
r
−
A
≤
1
54
50
53
mpbird
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
r
∈
A
−
1
A
+
1
55
4
recnd
⊢
φ
→
A
∈
ℂ
56
55
subidd
⊢
φ
→
A
−
A
=
0
57
56
fveq2d
⊢
φ
→
A
−
A
=
0
58
abs0
⊢
0
=
0
59
0le1
⊢
0
≤
1
60
58
59
eqbrtri
⊢
0
≤
1
61
57
60
eqbrtrdi
⊢
φ
→
A
−
A
≤
1
62
1red
⊢
φ
→
1
∈
ℝ
63
elicc4abs
⊢
A
∈
ℝ
∧
1
∈
ℝ
∧
A
∈
ℝ
→
A
∈
A
−
1
A
+
1
↔
A
−
A
≤
1
64
4
62
4
63
syl3anc
⊢
φ
→
A
∈
A
−
1
A
+
1
↔
A
−
A
≤
1
65
61
64
mpbird
⊢
φ
→
A
∈
A
−
1
A
+
1
66
65
adantr
⊢
φ
∧
a
∈
ℝ
→
A
∈
A
−
1
A
+
1
67
66
3ad2ant1
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
A
∈
A
−
1
A
+
1
68
fveq2
⊢
b
=
r
→
F
b
=
F
r
69
68
oveq2d
⊢
b
=
r
→
F
c
−
F
b
=
F
c
−
F
r
70
69
fveq2d
⊢
b
=
r
→
F
c
−
F
b
=
F
c
−
F
r
71
oveq2
⊢
b
=
r
→
c
−
b
=
c
−
r
72
71
fveq2d
⊢
b
=
r
→
c
−
b
=
c
−
r
73
72
oveq2d
⊢
b
=
r
→
a
c
−
b
=
a
c
−
r
74
70
73
breq12d
⊢
b
=
r
→
F
c
−
F
b
≤
a
c
−
b
↔
F
c
−
F
r
≤
a
c
−
r
75
fveq2
⊢
c
=
A
→
F
c
=
F
A
76
75
fvoveq1d
⊢
c
=
A
→
F
c
−
F
r
=
F
A
−
F
r
77
fvoveq1
⊢
c
=
A
→
c
−
r
=
A
−
r
78
77
oveq2d
⊢
c
=
A
→
a
c
−
r
=
a
A
−
r
79
76
78
breq12d
⊢
c
=
A
→
F
c
−
F
r
≤
a
c
−
r
↔
F
A
−
F
r
≤
a
A
−
r
80
74
79
rspc2v
⊢
r
∈
A
−
1
A
+
1
∧
A
∈
A
−
1
A
+
1
→
∀
b
∈
A
−
1
A
+
1
∀
c
∈
A
−
1
A
+
1
F
c
−
F
b
≤
a
c
−
b
→
F
A
−
F
r
≤
a
A
−
r
81
54
67
80
syl2anc
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
∀
b
∈
A
−
1
A
+
1
∀
c
∈
A
−
1
A
+
1
F
c
−
F
b
≤
a
c
−
b
→
F
A
−
F
r
≤
a
A
−
r
82
simp1l
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
φ
83
82
5
syl
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
F
A
=
0
84
0cn
⊢
0
∈
ℂ
85
83
84
eqeltrdi
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
F
A
∈
ℂ
86
39
adantr
⊢
φ
∧
a
∈
ℝ
→
F
:
ℂ
⟶
ℂ
87
86
3ad2ant1
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
F
:
ℂ
⟶
ℂ
88
87
44
ffvelcdmd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
F
r
∈
ℂ
89
85
88
abssubd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
F
A
−
F
r
=
F
r
−
F
A
90
83
oveq2d
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
F
r
−
F
A
=
F
r
−
0
91
88
subid1d
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
F
r
−
0
=
F
r
92
90
91
eqtrd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
F
r
−
F
A
=
F
r
93
92
fveq2d
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
F
r
−
F
A
=
F
r
94
89
93
eqtrd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
F
A
−
F
r
=
F
r
95
94
breq1d
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
F
A
−
F
r
≤
a
A
−
r
↔
F
r
≤
a
A
−
r
96
81
95
sylibd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
A
−
r
≤
1
→
∀
b
∈
A
−
1
A
+
1
∀
c
∈
A
−
1
A
+
1
F
c
−
F
b
≤
a
c
−
b
→
F
r
≤
a
A
−
r
97
96
3exp
⊢
φ
∧
a
∈
ℝ
→
r
∈
ℝ
→
A
−
r
≤
1
→
∀
b
∈
A
−
1
A
+
1
∀
c
∈
A
−
1
A
+
1
F
c
−
F
b
≤
a
c
−
b
→
F
r
≤
a
A
−
r
98
97
com34
⊢
φ
∧
a
∈
ℝ
→
r
∈
ℝ
→
∀
b
∈
A
−
1
A
+
1
∀
c
∈
A
−
1
A
+
1
F
c
−
F
b
≤
a
c
−
b
→
A
−
r
≤
1
→
F
r
≤
a
A
−
r
99
98
com23
⊢
φ
∧
a
∈
ℝ
→
∀
b
∈
A
−
1
A
+
1
∀
c
∈
A
−
1
A
+
1
F
c
−
F
b
≤
a
c
−
b
→
r
∈
ℝ
→
A
−
r
≤
1
→
F
r
≤
a
A
−
r
100
99
ralrimdv
⊢
φ
∧
a
∈
ℝ
→
∀
b
∈
A
−
1
A
+
1
∀
c
∈
A
−
1
A
+
1
F
c
−
F
b
≤
a
c
−
b
→
∀
r
∈
ℝ
A
−
r
≤
1
→
F
r
≤
a
A
−
r
101
100
reximdva
⊢
φ
→
∃
a
∈
ℝ
∀
b
∈
A
−
1
A
+
1
∀
c
∈
A
−
1
A
+
1
F
c
−
F
b
≤
a
c
−
b
→
∃
a
∈
ℝ
∀
r
∈
ℝ
A
−
r
≤
1
→
F
r
≤
a
A
−
r
102
42
101
mpd
⊢
φ
→
∃
a
∈
ℝ
∀
r
∈
ℝ
A
−
r
≤
1
→
F
r
≤
a
A
−
r
103
1rp
⊢
1
∈
ℝ
+
104
103
a1i
⊢
φ
∧
a
∈
ℝ
∧
a
=
0
→
1
∈
ℝ
+
105
recn
⊢
a
∈
ℝ
→
a
∈
ℂ
106
105
adantl
⊢
φ
∧
a
∈
ℝ
→
a
∈
ℂ
107
neqne
⊢
¬
a
=
0
→
a
≠
0
108
absrpcl
⊢
a
∈
ℂ
∧
a
≠
0
→
a
∈
ℝ
+
109
106
107
108
syl2an
⊢
φ
∧
a
∈
ℝ
∧
¬
a
=
0
→
a
∈
ℝ
+
110
109
rpreccld
⊢
φ
∧
a
∈
ℝ
∧
¬
a
=
0
→
1
a
∈
ℝ
+
111
104
110
ifclda
⊢
φ
∧
a
∈
ℝ
→
if
a
=
0
1
1
a
∈
ℝ
+
112
eqid
⊢
if
a
=
0
1
1
a
=
if
a
=
0
1
1
a
113
eqif
⊢
if
a
=
0
1
1
a
=
if
a
=
0
1
1
a
↔
a
=
0
∧
if
a
=
0
1
1
a
=
1
∨
¬
a
=
0
∧
if
a
=
0
1
1
a
=
1
a
114
112
113
mpbi
⊢
a
=
0
∧
if
a
=
0
1
1
a
=
1
∨
¬
a
=
0
∧
if
a
=
0
1
1
a
=
1
a
115
simplrr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
F
r
≤
a
A
−
r
116
oveq1
⊢
a
=
0
→
a
A
−
r
=
0
⋅
A
−
r
117
116
adantl
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
a
A
−
r
=
0
⋅
A
−
r
118
4
ad2antrr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
A
∈
ℝ
119
simprl
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
r
∈
ℝ
120
118
119
resubcld
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
A
−
r
∈
ℝ
121
120
recnd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
A
−
r
∈
ℂ
122
121
abscld
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
A
−
r
∈
ℝ
123
122
recnd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
A
−
r
∈
ℂ
124
123
adantr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
A
−
r
∈
ℂ
125
124
mul02d
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
0
⋅
A
−
r
=
0
126
117
125
eqtrd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
a
A
−
r
=
0
127
115
126
breqtrd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
F
r
≤
0
128
39
ad2antrr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
F
:
ℂ
⟶
ℂ
129
119
recnd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
r
∈
ℂ
130
128
129
ffvelcdmd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
F
r
∈
ℂ
131
130
adantr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
F
r
∈
ℂ
132
131
absge0d
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
0
≤
F
r
133
130
abscld
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
F
r
∈
ℝ
134
133
adantr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
F
r
∈
ℝ
135
0re
⊢
0
∈
ℝ
136
letri3
⊢
F
r
∈
ℝ
∧
0
∈
ℝ
→
F
r
=
0
↔
F
r
≤
0
∧
0
≤
F
r
137
134
135
136
sylancl
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
F
r
=
0
↔
F
r
≤
0
∧
0
≤
F
r
138
127
132
137
mpbir2and
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
F
r
=
0
139
138
oveq2d
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
1
F
r
=
1
⋅
0
140
ax-1cn
⊢
1
∈
ℂ
141
140
mul01i
⊢
1
⋅
0
=
0
142
139
141
eqtrdi
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
1
F
r
=
0
143
121
adantr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
A
−
r
∈
ℂ
144
143
absge0d
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
0
≤
A
−
r
145
142
144
eqbrtrd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
1
F
r
≤
A
−
r
146
oveq1
⊢
if
a
=
0
1
1
a
=
1
→
if
a
=
0
1
1
a
F
r
=
1
F
r
147
146
breq1d
⊢
if
a
=
0
1
1
a
=
1
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
↔
1
F
r
≤
A
−
r
148
145
147
syl5ibrcom
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
=
0
→
if
a
=
0
1
1
a
=
1
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
149
148
expimpd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
a
=
0
∧
if
a
=
0
1
1
a
=
1
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
150
df-ne
⊢
a
≠
0
↔
¬
a
=
0
151
133
adantr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
F
r
∈
ℝ
152
151
recnd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
F
r
∈
ℂ
153
simpllr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
a
∈
ℝ
154
153
recnd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
a
∈
ℂ
155
154
108
sylancom
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
a
∈
ℝ
+
156
155
rpcnne0d
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
a
∈
ℂ
∧
a
≠
0
157
divrec2
⊢
F
r
∈
ℂ
∧
a
∈
ℂ
∧
a
≠
0
→
F
r
a
=
1
a
F
r
158
157
3expb
⊢
F
r
∈
ℂ
∧
a
∈
ℂ
∧
a
≠
0
→
F
r
a
=
1
a
F
r
159
152
156
158
syl2anc
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
F
r
a
=
1
a
F
r
160
simplr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
a
∈
ℝ
161
160
122
remulcld
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
a
A
−
r
∈
ℝ
162
160
recnd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
a
∈
ℂ
163
162
abscld
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
a
∈
ℝ
164
163
122
remulcld
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
a
A
−
r
∈
ℝ
165
simprr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
F
r
≤
a
A
−
r
166
121
absge0d
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
0
≤
A
−
r
167
leabs
⊢
a
∈
ℝ
→
a
≤
a
168
167
ad2antlr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
a
≤
a
169
160
163
122
166
168
lemul1ad
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
a
A
−
r
≤
a
A
−
r
170
133
161
164
165
169
letrd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
F
r
≤
a
A
−
r
171
170
adantr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
F
r
≤
a
A
−
r
172
122
adantr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
A
−
r
∈
ℝ
173
151
172
155
ledivmuld
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
F
r
a
≤
A
−
r
↔
F
r
≤
a
A
−
r
174
171
173
mpbird
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
F
r
a
≤
A
−
r
175
159
174
eqbrtrrd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
a
≠
0
→
1
a
F
r
≤
A
−
r
176
150
175
sylan2br
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
¬
a
=
0
→
1
a
F
r
≤
A
−
r
177
oveq1
⊢
if
a
=
0
1
1
a
=
1
a
→
if
a
=
0
1
1
a
F
r
=
1
a
F
r
178
177
breq1d
⊢
if
a
=
0
1
1
a
=
1
a
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
↔
1
a
F
r
≤
A
−
r
179
176
178
syl5ibrcom
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
∧
¬
a
=
0
→
if
a
=
0
1
1
a
=
1
a
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
180
179
expimpd
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
¬
a
=
0
∧
if
a
=
0
1
1
a
=
1
a
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
181
149
180
jaod
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
a
=
0
∧
if
a
=
0
1
1
a
=
1
∨
¬
a
=
0
∧
if
a
=
0
1
1
a
=
1
a
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
182
114
181
mpi
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
∧
F
r
≤
a
A
−
r
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
183
182
expr
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
→
F
r
≤
a
A
−
r
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
184
183
imim2d
⊢
φ
∧
a
∈
ℝ
∧
r
∈
ℝ
→
A
−
r
≤
1
→
F
r
≤
a
A
−
r
→
A
−
r
≤
1
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
185
184
ralimdva
⊢
φ
∧
a
∈
ℝ
→
∀
r
∈
ℝ
A
−
r
≤
1
→
F
r
≤
a
A
−
r
→
∀
r
∈
ℝ
A
−
r
≤
1
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
186
oveq1
⊢
x
=
if
a
=
0
1
1
a
→
x
F
r
=
if
a
=
0
1
1
a
F
r
187
186
breq1d
⊢
x
=
if
a
=
0
1
1
a
→
x
F
r
≤
A
−
r
↔
if
a
=
0
1
1
a
F
r
≤
A
−
r
188
187
imbi2d
⊢
x
=
if
a
=
0
1
1
a
→
A
−
r
≤
1
→
x
F
r
≤
A
−
r
↔
A
−
r
≤
1
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
189
188
ralbidv
⊢
x
=
if
a
=
0
1
1
a
→
∀
r
∈
ℝ
A
−
r
≤
1
→
x
F
r
≤
A
−
r
↔
∀
r
∈
ℝ
A
−
r
≤
1
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
190
189
rspcev
⊢
if
a
=
0
1
1
a
∈
ℝ
+
∧
∀
r
∈
ℝ
A
−
r
≤
1
→
if
a
=
0
1
1
a
F
r
≤
A
−
r
→
∃
x
∈
ℝ
+
∀
r
∈
ℝ
A
−
r
≤
1
→
x
F
r
≤
A
−
r
191
111
185
190
syl6an
⊢
φ
∧
a
∈
ℝ
→
∀
r
∈
ℝ
A
−
r
≤
1
→
F
r
≤
a
A
−
r
→
∃
x
∈
ℝ
+
∀
r
∈
ℝ
A
−
r
≤
1
→
x
F
r
≤
A
−
r
192
191
rexlimdva
⊢
φ
→
∃
a
∈
ℝ
∀
r
∈
ℝ
A
−
r
≤
1
→
F
r
≤
a
A
−
r
→
∃
x
∈
ℝ
+
∀
r
∈
ℝ
A
−
r
≤
1
→
x
F
r
≤
A
−
r
193
102
192
mpd
⊢
φ
→
∃
x
∈
ℝ
+
∀
r
∈
ℝ
A
−
r
≤
1
→
x
F
r
≤
A
−
r