Metamath Proof Explorer


Theorem aalioulem3

Description: Lemma for aaliou . (Contributed by Stefan O'Rear, 15-Nov-2014)

Ref Expression
Hypotheses aalioulem2.a N=degF
aalioulem2.b φFPoly
aalioulem2.c φN
aalioulem2.d φA
aalioulem3.e φFA=0
Assertion aalioulem3 φx+rAr1xFrAr

Proof

Step Hyp Ref Expression
1 aalioulem2.a N=degF
2 aalioulem2.b φFPoly
3 aalioulem2.c φN
4 aalioulem2.d φA
5 aalioulem3.e φFA=0
6 1re 1
7 resubcl A1A1
8 4 6 7 sylancl φA1
9 peano2re AA+1
10 4 9 syl φA+1
11 reelprrecn
12 ssid
13 fncpn CnFn0
14 12 13 ax-mp CnFn0
15 1nn0 10
16 fnfvelrn CnFn010Cn1ranCn
17 14 15 16 mp2an Cn1ranCn
18 intss1 Cn1ranCnranCnCn1
19 17 18 ax-mp ranCnCn1
20 plycpn FPolyFranCn
21 2 20 syl φFranCn
22 19 21 sselid φFCn1
23 cpnres FCn1FCn1
24 11 22 23 sylancr φFCn1
25 df-ima F=ranF
26 zssre
27 ax-resscn
28 plyss PolyPoly
29 26 27 28 mp2an PolyPoly
30 29 2 sselid φFPoly
31 plyreres FPolyF:
32 30 31 syl φF:
33 32 frnd φranF
34 25 33 eqsstrid φF
35 iccssre A1A+1A1A+1
36 8 10 35 syl2anc φA1A+1
37 36 27 sstrdi φA1A+1
38 plyf FPolyF:
39 2 38 syl φF:
40 39 fdmd φdomF=
41 37 40 sseqtrrd φA1A+1domF
42 8 10 24 34 41 c1lip3 φabA1A+1cA1A+1FcFbacb
43 simp2 φarAr1r
44 43 recnd φarAr1r
45 4 adantr φaA
46 45 3ad2ant1 φarAr1A
47 46 recnd φarAr1A
48 44 47 abssubd φarAr1rA=Ar
49 simp3 φarAr1Ar1
50 48 49 eqbrtrd φarAr1rA1
51 1red φarAr11
52 elicc4abs A1rrA1A+1rA1
53 46 51 43 52 syl3anc φarAr1rA1A+1rA1
54 50 53 mpbird φarAr1rA1A+1
55 4 recnd φA
56 55 subidd φAA=0
57 56 fveq2d φAA=0
58 abs0 0=0
59 0le1 01
60 58 59 eqbrtri 01
61 57 60 eqbrtrdi φAA1
62 1red φ1
63 elicc4abs A1AAA1A+1AA1
64 4 62 4 63 syl3anc φAA1A+1AA1
65 61 64 mpbird φAA1A+1
66 65 adantr φaAA1A+1
67 66 3ad2ant1 φarAr1AA1A+1
68 fveq2 b=rFb=Fr
69 68 oveq2d b=rFcFb=FcFr
70 69 fveq2d b=rFcFb=FcFr
71 oveq2 b=rcb=cr
72 71 fveq2d b=rcb=cr
73 72 oveq2d b=racb=acr
74 70 73 breq12d b=rFcFbacbFcFracr
75 fveq2 c=AFc=FA
76 75 fvoveq1d c=AFcFr=FAFr
77 fvoveq1 c=Acr=Ar
78 77 oveq2d c=Aacr=aAr
79 76 78 breq12d c=AFcFracrFAFraAr
80 74 79 rspc2v rA1A+1AA1A+1bA1A+1cA1A+1FcFbacbFAFraAr
81 54 67 80 syl2anc φarAr1bA1A+1cA1A+1FcFbacbFAFraAr
82 simp1l φarAr1φ
83 82 5 syl φarAr1FA=0
84 0cn 0
85 83 84 eqeltrdi φarAr1FA
86 39 adantr φaF:
87 86 3ad2ant1 φarAr1F:
88 87 44 ffvelcdmd φarAr1Fr
89 85 88 abssubd φarAr1FAFr=FrFA
90 83 oveq2d φarAr1FrFA=Fr0
91 88 subid1d φarAr1Fr0=Fr
92 90 91 eqtrd φarAr1FrFA=Fr
93 92 fveq2d φarAr1FrFA=Fr
94 89 93 eqtrd φarAr1FAFr=Fr
95 94 breq1d φarAr1FAFraArFraAr
96 81 95 sylibd φarAr1bA1A+1cA1A+1FcFbacbFraAr
97 96 3exp φarAr1bA1A+1cA1A+1FcFbacbFraAr
98 97 com34 φarbA1A+1cA1A+1FcFbacbAr1FraAr
99 98 com23 φabA1A+1cA1A+1FcFbacbrAr1FraAr
100 99 ralrimdv φabA1A+1cA1A+1FcFbacbrAr1FraAr
101 100 reximdva φabA1A+1cA1A+1FcFbacbarAr1FraAr
102 42 101 mpd φarAr1FraAr
103 1rp 1+
104 103 a1i φaa=01+
105 recn aa
106 105 adantl φaa
107 neqne ¬a=0a0
108 absrpcl aa0a+
109 106 107 108 syl2an φa¬a=0a+
110 109 rpreccld φa¬a=01a+
111 104 110 ifclda φaifa=011a+
112 eqid ifa=011a=ifa=011a
113 eqif ifa=011a=ifa=011aa=0ifa=011a=1¬a=0ifa=011a=1a
114 112 113 mpbi a=0ifa=011a=1¬a=0ifa=011a=1a
115 simplrr φarFraAra=0FraAr
116 oveq1 a=0aAr=0Ar
117 116 adantl φarFraAra=0aAr=0Ar
118 4 ad2antrr φarFraArA
119 simprl φarFraArr
120 118 119 resubcld φarFraArAr
121 120 recnd φarFraArAr
122 121 abscld φarFraArAr
123 122 recnd φarFraArAr
124 123 adantr φarFraAra=0Ar
125 124 mul02d φarFraAra=00Ar=0
126 117 125 eqtrd φarFraAra=0aAr=0
127 115 126 breqtrd φarFraAra=0Fr0
128 39 ad2antrr φarFraArF:
129 119 recnd φarFraArr
130 128 129 ffvelcdmd φarFraArFr
131 130 adantr φarFraAra=0Fr
132 131 absge0d φarFraAra=00Fr
133 130 abscld φarFraArFr
134 133 adantr φarFraAra=0Fr
135 0re 0
136 letri3 Fr0Fr=0Fr00Fr
137 134 135 136 sylancl φarFraAra=0Fr=0Fr00Fr
138 127 132 137 mpbir2and φarFraAra=0Fr=0
139 138 oveq2d φarFraAra=01Fr=10
140 ax-1cn 1
141 140 mul01i 10=0
142 139 141 eqtrdi φarFraAra=01Fr=0
143 121 adantr φarFraAra=0Ar
144 143 absge0d φarFraAra=00Ar
145 142 144 eqbrtrd φarFraAra=01FrAr
146 oveq1 ifa=011a=1ifa=011aFr=1Fr
147 146 breq1d ifa=011a=1ifa=011aFrAr1FrAr
148 145 147 syl5ibrcom φarFraAra=0ifa=011a=1ifa=011aFrAr
149 148 expimpd φarFraAra=0ifa=011a=1ifa=011aFrAr
150 df-ne a0¬a=0
151 133 adantr φarFraAra0Fr
152 151 recnd φarFraAra0Fr
153 simpllr φarFraAra0a
154 153 recnd φarFraAra0a
155 154 108 sylancom φarFraAra0a+
156 155 rpcnne0d φarFraAra0aa0
157 divrec2 Fraa0Fra=1aFr
158 157 3expb Fraa0Fra=1aFr
159 152 156 158 syl2anc φarFraAra0Fra=1aFr
160 simplr φarFraAra
161 160 122 remulcld φarFraAraAr
162 160 recnd φarFraAra
163 162 abscld φarFraAra
164 163 122 remulcld φarFraAraAr
165 simprr φarFraArFraAr
166 121 absge0d φarFraAr0Ar
167 leabs aaa
168 167 ad2antlr φarFraAraa
169 160 163 122 166 168 lemul1ad φarFraAraAraAr
170 133 161 164 165 169 letrd φarFraArFraAr
171 170 adantr φarFraAra0FraAr
172 122 adantr φarFraAra0Ar
173 151 172 155 ledivmuld φarFraAra0FraArFraAr
174 171 173 mpbird φarFraAra0FraAr
175 159 174 eqbrtrrd φarFraAra01aFrAr
176 150 175 sylan2br φarFraAr¬a=01aFrAr
177 oveq1 ifa=011a=1aifa=011aFr=1aFr
178 177 breq1d ifa=011a=1aifa=011aFrAr1aFrAr
179 176 178 syl5ibrcom φarFraAr¬a=0ifa=011a=1aifa=011aFrAr
180 179 expimpd φarFraAr¬a=0ifa=011a=1aifa=011aFrAr
181 149 180 jaod φarFraAra=0ifa=011a=1¬a=0ifa=011a=1aifa=011aFrAr
182 114 181 mpi φarFraArifa=011aFrAr
183 182 expr φarFraArifa=011aFrAr
184 183 imim2d φarAr1FraArAr1ifa=011aFrAr
185 184 ralimdva φarAr1FraArrAr1ifa=011aFrAr
186 oveq1 x=ifa=011axFr=ifa=011aFr
187 186 breq1d x=ifa=011axFrArifa=011aFrAr
188 187 imbi2d x=ifa=011aAr1xFrArAr1ifa=011aFrAr
189 188 ralbidv x=ifa=011arAr1xFrArrAr1ifa=011aFrAr
190 189 rspcev ifa=011a+rAr1ifa=011aFrArx+rAr1xFrAr
191 111 185 190 syl6an φarAr1FraArx+rAr1xFrAr
192 191 rexlimdva φarAr1FraArx+rAr1xFrAr
193 102 192 mpd φx+rAr1xFrAr