Metamath Proof Explorer


Theorem abelthlem9

Description: Lemma for abelth . By adjusting the constant term, we can assume that the entire series converges to 0 . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Hypotheses abelth.1 φA:0
abelth.2 φseq0+Adom
abelth.3 φM
abelth.4 φ0M
abelth.5 S=z|1zM1z
abelth.6 F=xSn0Anxn
Assertion abelthlem9 φR+w+yS1y<wF1Fy<R

Proof

Step Hyp Ref Expression
1 abelth.1 φA:0
2 abelth.2 φseq0+Adom
3 abelth.3 φM
4 abelth.4 φ0M
5 abelth.5 S=z|1zM1z
6 abelth.6 F=xSn0Anxn
7 0nn0 00
8 7 a1i k000
9 ffvelcdm A:000A0
10 1 8 9 syl2an φk0A0
11 nn0uz 0=0
12 0zd φ0
13 eqidd φm0Am=Am
14 1 ffvelcdmda φm0Am
15 11 12 13 14 2 isumcl φm0Am
16 15 adantr φk0m0Am
17 10 16 subcld φk0A0m0Am
18 1 ffvelcdmda φk0Ak
19 17 18 ifcld φk0ifk=0A0m0AmAk
20 19 fmpttd φk0ifk=0A0m0AmAk:0
21 7 a1i φ00
22 20 ffvelcdmda φi0k0ifk=0A0m0AmAki
23 1e0p1 1=0+1
24 1z 1
25 23 24 eqeltrri 0+1
26 25 a1i φ0+1
27 nnuz =1
28 23 fveq2i 1=0+1
29 27 28 eqtri =0+1
30 29 eleq2i ii0+1
31 nnnn0 ii0
32 31 adantl φii0
33 eqeq1 k=ik=0i=0
34 fveq2 k=iAk=Ai
35 33 34 ifbieq2d k=iifk=0A0m0AmAk=ifi=0A0m0AmAi
36 eqid k0ifk=0A0m0AmAk=k0ifk=0A0m0AmAk
37 ovex A0m0AmV
38 fvex AiV
39 37 38 ifex ifi=0A0m0AmAiV
40 35 36 39 fvmpt i0k0ifk=0A0m0AmAki=ifi=0A0m0AmAi
41 32 40 syl φik0ifk=0A0m0AmAki=ifi=0A0m0AmAi
42 nnne0 ii0
43 42 adantl φii0
44 43 neneqd φi¬i=0
45 44 iffalsed φiifi=0A0m0AmAi=Ai
46 41 45 eqtrd φik0ifk=0A0m0AmAki=Ai
47 30 46 sylan2br φi0+1k0ifk=0A0m0AmAki=Ai
48 26 47 seqfeq φseq0+1+k0ifk=0A0m0AmAk=seq0+1+A
49 11 12 13 14 2 isumclim2 φseq0+Am0Am
50 11 21 18 49 clim2ser φseq0+1+Am0Amseq0+A0
51 0z 0
52 seq1 0seq0+A0=A0
53 51 52 ax-mp seq0+A0=A0
54 53 oveq2i m0Amseq0+A0=m0AmA0
55 50 54 breqtrdi φseq0+1+Am0AmA0
56 48 55 eqbrtrd φseq0+1+k0ifk=0A0m0AmAkm0AmA0
57 11 21 22 56 clim2ser2 φseq0+k0ifk=0A0m0AmAkm0Am-A0+seq0+k0ifk=0A0m0AmAk0
58 seq1 0seq0+k0ifk=0A0m0AmAk0=k0ifk=0A0m0AmAk0
59 51 58 ax-mp seq0+k0ifk=0A0m0AmAk0=k0ifk=0A0m0AmAk0
60 iftrue k=0ifk=0A0m0AmAk=A0m0Am
61 60 36 37 fvmpt 00k0ifk=0A0m0AmAk0=A0m0Am
62 7 61 ax-mp k0ifk=0A0m0AmAk0=A0m0Am
63 59 62 eqtri seq0+k0ifk=0A0m0AmAk0=A0m0Am
64 63 oveq2i m0Am-A0+seq0+k0ifk=0A0m0AmAk0=m0AmA0+A0-m0Am
65 1 7 9 sylancl φA0
66 npncan2 m0AmA0m0AmA0+A0-m0Am=0
67 15 65 66 syl2anc φm0AmA0+A0-m0Am=0
68 64 67 eqtrid φm0Am-A0+seq0+k0ifk=0A0m0AmAk0=0
69 57 68 breqtrd φseq0+k0ifk=0A0m0AmAk0
70 seqex seq0+k0ifk=0A0m0AmAkV
71 c0ex 0V
72 70 71 breldm seq0+k0ifk=0A0m0AmAk0seq0+k0ifk=0A0m0AmAkdom
73 69 72 syl φseq0+k0ifk=0A0m0AmAkdom
74 eqid xSi0k0ifk=0A0m0AmAkixi=xSi0k0ifk=0A0m0AmAkixi
75 20 73 3 4 5 74 69 abelthlem8 φR+w+yS1y<wxSi0k0ifk=0A0m0AmAkixi1xSi0k0ifk=0A0m0AmAkixiy<R
76 1 2 3 4 5 abelthlem2 φ1SS10ballabs1
77 76 simpld φ1S
78 77 adantr φyS1S
79 40 adantl x=1i0k0ifk=0A0m0AmAki=ifi=0A0m0AmAi
80 oveq1 x=1xi=1i
81 nn0z i0i
82 1exp i1i=1
83 81 82 syl i01i=1
84 80 83 sylan9eq x=1i0xi=1
85 79 84 oveq12d x=1i0k0ifk=0A0m0AmAkixi=ifi=0A0m0AmAi1
86 85 sumeq2dv x=1i0k0ifk=0A0m0AmAkixi=i0ifi=0A0m0AmAi1
87 sumex i0ifi=0A0m0AmAi1V
88 86 74 87 fvmpt 1SxSi0k0ifk=0A0m0AmAkixi1=i0ifi=0A0m0AmAi1
89 78 88 syl φySxSi0k0ifk=0A0m0AmAkixi1=i0ifi=0A0m0AmAi1
90 0zd φyS0
91 40 adantl φySi0k0ifk=0A0m0AmAki=ifi=0A0m0AmAi
92 65 15 subcld φA0m0Am
93 92 ad2antrr φySi0A0m0Am
94 1 ffvelcdmda φi0Ai
95 94 adantlr φySi0Ai
96 93 95 ifcld φySi0ifi=0A0m0AmAi
97 96 mulridd φySi0ifi=0A0m0AmAi1=ifi=0A0m0AmAi
98 91 97 eqtr4d φySi0k0ifk=0A0m0AmAki=ifi=0A0m0AmAi1
99 97 96 eqeltrd φySi0ifi=0A0m0AmAi1
100 oveq1 x=1xn=1n
101 nn0z n0n
102 1exp n1n=1
103 101 102 syl n01n=1
104 100 103 sylan9eq x=1n0xn=1
105 104 oveq2d x=1n0Anxn=An1
106 105 sumeq2dv x=1n0Anxn=n0An1
107 fveq2 n=mAn=Am
108 107 oveq1d n=mAn1=Am1
109 108 cbvsumv n0An1=m0Am1
110 106 109 eqtrdi x=1n0Anxn=m0Am1
111 sumex m0Am1V
112 110 6 111 fvmpt 1SF1=m0Am1
113 77 112 syl φF1=m0Am1
114 14 mulridd φm0Am1=Am
115 114 sumeq2dv φm0Am1=m0Am
116 113 115 eqtrd φF1=m0Am
117 116 oveq1d φF1m0Am=m0Amm0Am
118 15 subidd φm0Amm0Am=0
119 117 118 eqtrd φF1m0Am=0
120 69 119 breqtrrd φseq0+k0ifk=0A0m0AmAkF1m0Am
121 120 adantr φySseq0+k0ifk=0A0m0AmAkF1m0Am
122 11 90 98 99 121 isumclim φySi0ifi=0A0m0AmAi1=F1m0Am
123 89 122 eqtrd φySxSi0k0ifk=0A0m0AmAkixi1=F1m0Am
124 oveq1 x=yxi=yi
125 40 124 oveqan12rd x=yi0k0ifk=0A0m0AmAkixi=ifi=0A0m0AmAiyi
126 125 sumeq2dv x=yi0k0ifk=0A0m0AmAkixi=i0ifi=0A0m0AmAiyi
127 sumex i0ifi=0A0m0AmAiyiV
128 126 74 127 fvmpt ySxSi0k0ifk=0A0m0AmAkixiy=i0ifi=0A0m0AmAiyi
129 128 adantl φySxSi0k0ifk=0A0m0AmAkixiy=i0ifi=0A0m0AmAiyi
130 oveq2 k=iyk=yi
131 35 130 oveq12d k=iifk=0A0m0AmAkyk=ifi=0A0m0AmAiyi
132 eqid k0ifk=0A0m0AmAkyk=k0ifk=0A0m0AmAkyk
133 ovex ifi=0A0m0AmAiyiV
134 131 132 133 fvmpt i0k0ifk=0A0m0AmAkyki=ifi=0A0m0AmAiyi
135 134 adantl φySi0k0ifk=0A0m0AmAkyki=ifi=0A0m0AmAiyi
136 5 ssrab3 S
137 136 a1i φS
138 137 sselda φySy
139 expcl yi0yi
140 138 139 sylan φySi0yi
141 96 140 mulcld φySi0ifi=0A0m0AmAiyi
142 7 a1i φyS00
143 19 adantlr φySk0ifk=0A0m0AmAk
144 expcl yk0yk
145 138 144 sylan φySk0yk
146 143 145 mulcld φySk0ifk=0A0m0AmAkyk
147 146 fmpttd φySk0ifk=0A0m0AmAkyk:0
148 147 ffvelcdmda φySi0k0ifk=0A0m0AmAkyki
149 45 oveq1d φiifi=0A0m0AmAiyi=Aiyi
150 32 134 syl φik0ifk=0A0m0AmAkyki=ifi=0A0m0AmAiyi
151 34 130 oveq12d k=iAkyk=Aiyi
152 eqid k0Akyk=k0Akyk
153 ovex AiyiV
154 151 152 153 fvmpt i0k0Akyki=Aiyi
155 32 154 syl φik0Akyki=Aiyi
156 149 150 155 3eqtr4d φik0ifk=0A0m0AmAkyki=k0Akyki
157 30 156 sylan2br φi0+1k0ifk=0A0m0AmAkyki=k0Akyki
158 26 157 seqfeq φseq0+1+k0ifk=0A0m0AmAkyk=seq0+1+k0Akyk
159 158 adantr φySseq0+1+k0ifk=0A0m0AmAkyk=seq0+1+k0Akyk
160 18 adantlr φySk0Ak
161 160 145 mulcld φySk0Akyk
162 161 fmpttd φySk0Akyk:0
163 162 ffvelcdmda φySi0k0Akyki
164 154 adantl φySi0k0Akyki=Aiyi
165 95 140 mulcld φySi0Aiyi
166 1 2 3 4 5 abelthlem3 φySseq0+k0Akykdom
167 11 90 164 165 166 isumclim2 φySseq0+k0Akyki0Aiyi
168 fveq2 n=iAn=Ai
169 oveq2 n=ixn=xi
170 168 169 oveq12d n=iAnxn=Aixi
171 170 cbvsumv n0Anxn=i0Aixi
172 124 oveq2d x=yAixi=Aiyi
173 172 sumeq2sdv x=yi0Aixi=i0Aiyi
174 171 173 eqtrid x=yn0Anxn=i0Aiyi
175 sumex i0AiyiV
176 174 6 175 fvmpt ySFy=i0Aiyi
177 176 adantl φySFy=i0Aiyi
178 167 177 breqtrrd φySseq0+k0AkykFy
179 11 142 163 178 clim2ser φySseq0+1+k0AkykFyseq0+k0Akyk0
180 seq1 0seq0+k0Akyk0=k0Akyk0
181 51 180 ax-mp seq0+k0Akyk0=k0Akyk0
182 fveq2 k=0Ak=A0
183 oveq2 k=0yk=y0
184 182 183 oveq12d k=0Akyk=A0y0
185 ovex A0y0V
186 184 152 185 fvmpt 00k0Akyk0=A0y0
187 7 186 ax-mp k0Akyk0=A0y0
188 181 187 eqtri seq0+k0Akyk0=A0y0
189 138 exp0d φySy0=1
190 189 oveq2d φySA0y0=A01
191 65 adantr φySA0
192 191 mulridd φySA01=A0
193 190 192 eqtrd φySA0y0=A0
194 188 193 eqtrid φySseq0+k0Akyk0=A0
195 194 oveq2d φySFyseq0+k0Akyk0=FyA0
196 179 195 breqtrd φySseq0+1+k0AkykFyA0
197 159 196 eqbrtrd φySseq0+1+k0ifk=0A0m0AmAkykFyA0
198 11 142 148 197 clim2ser2 φySseq0+k0ifk=0A0m0AmAkykFy-A0+seq0+k0ifk=0A0m0AmAkyk0
199 seq1 0seq0+k0ifk=0A0m0AmAkyk0=k0ifk=0A0m0AmAkyk0
200 51 199 ax-mp seq0+k0ifk=0A0m0AmAkyk0=k0ifk=0A0m0AmAkyk0
201 60 183 oveq12d k=0ifk=0A0m0AmAkyk=A0m0Amy0
202 ovex A0m0Amy0V
203 201 132 202 fvmpt 00k0ifk=0A0m0AmAkyk0=A0m0Amy0
204 7 203 ax-mp k0ifk=0A0m0AmAkyk0=A0m0Amy0
205 200 204 eqtri seq0+k0ifk=0A0m0AmAkyk0=A0m0Amy0
206 189 oveq2d φySA0m0Amy0=A0m0Am1
207 15 adantr φySm0Am
208 191 207 subcld φySA0m0Am
209 208 mulridd φySA0m0Am1=A0m0Am
210 206 209 eqtrd φySA0m0Amy0=A0m0Am
211 205 210 eqtrid φySseq0+k0ifk=0A0m0AmAkyk0=A0m0Am
212 211 oveq2d φySFy-A0+seq0+k0ifk=0A0m0AmAkyk0=FyA0+A0-m0Am
213 1 2 3 4 5 6 abelthlem4 φF:S
214 213 ffvelcdmda φySFy
215 214 191 207 npncand φySFyA0+A0-m0Am=Fym0Am
216 212 215 eqtrd φySFy-A0+seq0+k0ifk=0A0m0AmAkyk0=Fym0Am
217 198 216 breqtrd φySseq0+k0ifk=0A0m0AmAkykFym0Am
218 11 90 135 141 217 isumclim φySi0ifi=0A0m0AmAiyi=Fym0Am
219 129 218 eqtrd φySxSi0k0ifk=0A0m0AmAkixiy=Fym0Am
220 123 219 oveq12d φySxSi0k0ifk=0A0m0AmAkixi1xSi0k0ifk=0A0m0AmAkixiy=F1-m0Am-Fym0Am
221 213 adantr φySF:S
222 221 78 ffvelcdmd φySF1
223 222 214 207 nnncan2d φySF1-m0Am-Fym0Am=F1Fy
224 220 223 eqtrd φySxSi0k0ifk=0A0m0AmAkixi1xSi0k0ifk=0A0m0AmAkixiy=F1Fy
225 224 fveq2d φySxSi0k0ifk=0A0m0AmAkixi1xSi0k0ifk=0A0m0AmAkixiy=F1Fy
226 225 breq1d φySxSi0k0ifk=0A0m0AmAkixi1xSi0k0ifk=0A0m0AmAkixiy<RF1Fy<R
227 226 imbi2d φyS1y<wxSi0k0ifk=0A0m0AmAkixi1xSi0k0ifk=0A0m0AmAkixiy<R1y<wF1Fy<R
228 227 ralbidva φyS1y<wxSi0k0ifk=0A0m0AmAkixi1xSi0k0ifk=0A0m0AmAkixiy<RyS1y<wF1Fy<R
229 228 rexbidv φw+yS1y<wxSi0k0ifk=0A0m0AmAkixi1xSi0k0ifk=0A0m0AmAkixiy<Rw+yS1y<wF1Fy<R
230 229 adantr φR+w+yS1y<wxSi0k0ifk=0A0m0AmAkixi1xSi0k0ifk=0A0m0AmAkixiy<Rw+yS1y<wF1Fy<R
231 75 230 mpbid φR+w+yS1y<wF1Fy<R