Metamath Proof Explorer


Theorem archirngz

Description: Property of Archimedean left and right ordered groups. (Contributed by Thierry Arnoux, 6-May-2018)

Ref Expression
Hypotheses archirng.b B=BaseW
archirng.0 0˙=0W
archirng.i <˙=<W
archirng.l ˙=W
archirng.x ·˙=W
archirng.1 φWoGrp
archirng.2 φWArchi
archirng.3 φXB
archirng.4 φYB
archirng.5 φ0˙<˙X
archirngz.1 φopp𝑔WoGrp
Assertion archirngz φnn·˙X<˙YY˙n+1·˙X

Proof

Step Hyp Ref Expression
1 archirng.b B=BaseW
2 archirng.0 0˙=0W
3 archirng.i <˙=<W
4 archirng.l ˙=W
5 archirng.x ·˙=W
6 archirng.1 φWoGrp
7 archirng.2 φWArchi
8 archirng.3 φXB
9 archirng.4 φYB
10 archirng.5 φ0˙<˙X
11 archirngz.1 φopp𝑔WoGrp
12 neg1z 1
13 ogrpgrp WoGrpWGrp
14 6 13 syl φWGrp
15 1zzd φ1
16 eqid invgW=invgW
17 1 5 16 mulgneg WGrp1XB-1·˙X=invgW1·˙X
18 14 15 8 17 syl3anc φ-1·˙X=invgW1·˙X
19 1 5 mulg1 XB1·˙X=X
20 8 19 syl φ1·˙X=X
21 20 fveq2d φinvgW1·˙X=invgWX
22 18 21 eqtrd φ-1·˙X=invgWX
23 1 3 16 2 ogrpinv0lt WoGrpXB0˙<˙XinvgWX<˙0˙
24 23 biimpa WoGrpXB0˙<˙XinvgWX<˙0˙
25 6 8 10 24 syl21anc φinvgWX<˙0˙
26 22 25 eqbrtrd φ-1·˙X<˙0˙
27 26 adantr φY=0˙-1·˙X<˙0˙
28 simpr φY=0˙Y=0˙
29 27 28 breqtrrd φY=0˙-1·˙X<˙Y
30 isogrp WoGrpWGrpWoMnd
31 30 simprbi WoGrpWoMnd
32 omndtos WoMndWToset
33 6 31 32 3syl φWToset
34 tospos WTosetWPoset
35 33 34 syl φWPoset
36 1 2 grpidcl WGrp0˙B
37 6 13 36 3syl φ0˙B
38 1 4 posref WPoset0˙B0˙˙0˙
39 35 37 38 syl2anc φ0˙˙0˙
40 39 adantr φY=0˙0˙˙0˙
41 1m1e0 11=0
42 41 negeqi 11=0
43 ax-1cn 1
44 43 43 negsubdii 11=-1+1
45 neg0 0=0
46 42 44 45 3eqtr3i -1+1=0
47 46 oveq1i -1+1·˙X=0·˙X
48 1 2 5 mulg0 XB0·˙X=0˙
49 8 48 syl φ0·˙X=0˙
50 47 49 eqtrid φ-1+1·˙X=0˙
51 50 adantr φY=0˙-1+1·˙X=0˙
52 40 28 51 3brtr4d φY=0˙Y˙-1+1·˙X
53 29 52 jca φY=0˙-1·˙X<˙YY˙-1+1·˙X
54 oveq1 n=1n·˙X=-1·˙X
55 54 breq1d n=1n·˙X<˙Y-1·˙X<˙Y
56 oveq1 n=1n+1=-1+1
57 56 oveq1d n=1n+1·˙X=-1+1·˙X
58 57 breq2d n=1Y˙n+1·˙XY˙-1+1·˙X
59 55 58 anbi12d n=1n·˙X<˙YY˙n+1·˙X-1·˙X<˙YY˙-1+1·˙X
60 59 rspcev 1-1·˙X<˙YY˙-1+1·˙Xnn·˙X<˙YY˙n+1·˙X
61 12 53 60 sylancr φY=0˙nn·˙X<˙YY˙n+1·˙X
62 simpr φY<˙0˙m0m0
63 62 nn0zd φY<˙0˙m0m
64 63 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYm
65 64 znegcld φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYm
66 2z 2
67 66 a1i φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWY2
68 65 67 zsubcld φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWY-m-2
69 nn0cn m0m
70 69 adantl φY<˙0˙m0m
71 2cnd φY<˙0˙m02
72 70 71 negdi2d φY<˙0˙m0m+2=-m-2
73 72 oveq1d φY<˙0˙m0m+2·˙X=-m-2·˙X
74 6 ad2antrr φY<˙0˙m0WoGrp
75 11 ad2antrr φY<˙0˙m0opp𝑔WoGrp
76 74 75 jca φY<˙0˙m0WoGrpopp𝑔WoGrp
77 14 ad2antrr φY<˙0˙m0WGrp
78 63 peano2zd φY<˙0˙m0m+1
79 8 ad2antrr φY<˙0˙m0XB
80 1 5 mulgcl WGrpm+1XBm+1·˙XB
81 77 78 79 80 syl3anc φY<˙0˙m0m+1·˙XB
82 66 a1i φY<˙0˙m02
83 63 82 zaddcld φY<˙0˙m0m+2
84 1 5 mulgcl WGrpm+2XBm+2·˙XB
85 77 83 79 84 syl3anc φY<˙0˙m0m+2·˙XB
86 77 36 syl φY<˙0˙m00˙B
87 10 ad2antrr φY<˙0˙m00˙<˙X
88 eqid +W=+W
89 1 3 88 ogrpaddlt WoGrp0˙BXBm+1·˙XB0˙<˙X0˙+Wm+1·˙X<˙X+Wm+1·˙X
90 74 86 79 81 87 89 syl131anc φY<˙0˙m00˙+Wm+1·˙X<˙X+Wm+1·˙X
91 1 88 2 grplid WGrpm+1·˙XB0˙+Wm+1·˙X=m+1·˙X
92 77 81 91 syl2anc φY<˙0˙m00˙+Wm+1·˙X=m+1·˙X
93 1cnd m01
94 69 93 93 addassd m0m+1+1=m+1+1
95 1p1e2 1+1=2
96 95 oveq2i m+1+1=m+2
97 94 96 eqtrdi m0m+1+1=m+2
98 69 93 addcld m0m+1
99 98 93 addcomd m0m+1+1=1+m+1
100 97 99 eqtr3d m0m+2=1+m+1
101 100 oveq1d m0m+2·˙X=1+m+1·˙X
102 101 adantl φY<˙0˙m0m+2·˙X=1+m+1·˙X
103 1zzd φY<˙0˙m01
104 1 5 88 mulgdir WGrp1m+1XB1+m+1·˙X=1·˙X+Wm+1·˙X
105 77 103 78 79 104 syl13anc φY<˙0˙m01+m+1·˙X=1·˙X+Wm+1·˙X
106 79 19 syl φY<˙0˙m01·˙X=X
107 106 oveq1d φY<˙0˙m01·˙X+Wm+1·˙X=X+Wm+1·˙X
108 102 105 107 3eqtrrd φY<˙0˙m0X+Wm+1·˙X=m+2·˙X
109 90 92 108 3brtr3d φY<˙0˙m0m+1·˙X<˙m+2·˙X
110 1 3 16 ogrpinvlt WoGrpopp𝑔WoGrpm+1·˙XBm+2·˙XBm+1·˙X<˙m+2·˙XinvgWm+2·˙X<˙invgWm+1·˙X
111 110 biimpa WoGrpopp𝑔WoGrpm+1·˙XBm+2·˙XBm+1·˙X<˙m+2·˙XinvgWm+2·˙X<˙invgWm+1·˙X
112 76 81 85 109 111 syl31anc φY<˙0˙m0invgWm+2·˙X<˙invgWm+1·˙X
113 1 5 16 mulgneg WGrpm+2XBm+2·˙X=invgWm+2·˙X
114 77 83 79 113 syl3anc φY<˙0˙m0m+2·˙X=invgWm+2·˙X
115 1 5 16 mulgneg WGrpm+1XBm+1·˙X=invgWm+1·˙X
116 77 78 79 115 syl3anc φY<˙0˙m0m+1·˙X=invgWm+1·˙X
117 112 114 116 3brtr4d φY<˙0˙m0m+2·˙X<˙m+1·˙X
118 73 117 eqbrtrrd φY<˙0˙m0-m-2·˙X<˙m+1·˙X
119 118 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWY-m-2·˙X<˙m+1·˙X
120 116 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYm+1·˙X=invgWm+1·˙X
121 35 ad4antr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYWPoset
122 1 16 grpinvcl WGrpYBinvgWYB
123 14 9 122 syl2anc φinvgWYB
124 123 ad2antrr φY<˙0˙m0invgWYB
125 124 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYinvgWYB
126 81 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYm+1·˙XB
127 simplrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYinvgWY˙m+1·˙X
128 simpr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYm+1·˙X˙invgWY
129 1 4 posasymb WPosetinvgWYBm+1·˙XBinvgWY˙m+1·˙Xm+1·˙X˙invgWYinvgWY=m+1·˙X
130 129 biimpa WPosetinvgWYBm+1·˙XBinvgWY˙m+1·˙Xm+1·˙X˙invgWYinvgWY=m+1·˙X
131 121 125 126 127 128 130 syl32anc φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYinvgWY=m+1·˙X
132 131 fveq2d φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYinvgWinvgWY=invgWm+1·˙X
133 1 16 grpinvinv WGrpYBinvgWinvgWY=Y
134 14 9 133 syl2anc φinvgWinvgWY=Y
135 134 ad4antr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYinvgWinvgWY=Y
136 120 132 135 3eqtr2rd φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYY=m+1·˙X
137 119 136 breqtrrd φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWY-m-2·˙X<˙Y
138 1cnd φY<˙0˙m01
139 70 71 138 addsubassd φY<˙0˙m0m+2-1=m+2-1
140 2m1e1 21=1
141 140 oveq2i m+2-1=m+1
142 139 141 eqtr2di φY<˙0˙m0m+1=m+2-1
143 142 negeqd φY<˙0˙m0m+1=m+2-1
144 70 71 addcld φY<˙0˙m0m+2
145 144 138 negsubdid φY<˙0˙m0m+2-1=-m+2+1
146 72 oveq1d φY<˙0˙m0-m+2+1=m-2+1
147 143 145 146 3eqtrrd φY<˙0˙m0m-2+1=m+1
148 147 oveq1d φY<˙0˙m0m-2+1·˙X=m+1·˙X
149 33 ad2antrr φY<˙0˙m0WToset
150 149 34 syl φY<˙0˙m0WPoset
151 63 znegcld φY<˙0˙m0m
152 151 82 zsubcld φY<˙0˙m0-m-2
153 152 peano2zd φY<˙0˙m0m-2+1
154 1 5 mulgcl WGrpm-2+1XBm-2+1·˙XB
155 77 153 79 154 syl3anc φY<˙0˙m0m-2+1·˙XB
156 1 4 posref WPosetm-2+1·˙XBm-2+1·˙X˙m-2+1·˙X
157 150 155 156 syl2anc φY<˙0˙m0m-2+1·˙X˙m-2+1·˙X
158 148 157 eqbrtrrd φY<˙0˙m0m+1·˙X˙m-2+1·˙X
159 158 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYm+1·˙X˙m-2+1·˙X
160 136 159 eqbrtrd φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYY˙m-2+1·˙X
161 oveq1 n=-m-2n·˙X=-m-2·˙X
162 161 breq1d n=-m-2n·˙X<˙Y-m-2·˙X<˙Y
163 oveq1 n=-m-2n+1=m-2+1
164 163 oveq1d n=-m-2n+1·˙X=m-2+1·˙X
165 164 breq2d n=-m-2Y˙n+1·˙XY˙m-2+1·˙X
166 162 165 anbi12d n=-m-2n·˙X<˙YY˙n+1·˙X-m-2·˙X<˙YY˙m-2+1·˙X
167 166 rspcev -m-2-m-2·˙X<˙YY˙m-2+1·˙Xnn·˙X<˙YY˙n+1·˙X
168 68 137 160 167 syl12anc φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYnn·˙X<˙YY˙n+1·˙X
169 78 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙Xm+1
170 169 znegcld φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙Xm+1
171 6 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XWoGrp
172 11 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙Xopp𝑔WoGrp
173 171 172 jca φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XWoGrpopp𝑔WoGrp
174 173 3anassrs φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XWoGrpopp𝑔WoGrp
175 124 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XinvgWYB
176 81 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙Xm+1·˙XB
177 simpr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XinvgWY<˙m+1·˙X
178 1 3 16 ogrpinvlt WoGrpopp𝑔WoGrpinvgWYBm+1·˙XBinvgWY<˙m+1·˙XinvgWm+1·˙X<˙invgWinvgWY
179 178 biimpa WoGrpopp𝑔WoGrpinvgWYBm+1·˙XBinvgWY<˙m+1·˙XinvgWm+1·˙X<˙invgWinvgWY
180 174 175 176 177 179 syl31anc φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XinvgWm+1·˙X<˙invgWinvgWY
181 116 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙Xm+1·˙X=invgWm+1·˙X
182 181 eqcomd φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XinvgWm+1·˙X=m+1·˙X
183 134 ad4antr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XinvgWinvgWY=Y
184 180 182 183 3brtr3d φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙Xm+1·˙X<˙Y
185 simp-4l φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙Xφ
186 1 5 mulgcl WGrpmXBm·˙XB
187 77 63 79 186 syl3anc φY<˙0˙m0m·˙XB
188 1 3 16 ogrpinvlt WoGrpopp𝑔WoGrpm·˙XBinvgWYBm·˙X<˙invgWYinvgWinvgWY<˙invgWm·˙X
189 76 187 124 188 syl3anc φY<˙0˙m0m·˙X<˙invgWYinvgWinvgWY<˙invgWm·˙X
190 189 biimpa φY<˙0˙m0m·˙X<˙invgWYinvgWinvgWY<˙invgWm·˙X
191 190 adantrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWinvgWY<˙invgWm·˙X
192 191 adantr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XinvgWinvgWY<˙invgWm·˙X
193 negdi m1m+1=-m+-1
194 69 43 193 sylancl m0m+1=-m+-1
195 194 oveq1d m0-m+1+1=m+-1+1
196 69 negcld m0m
197 93 negcld m01
198 196 197 93 addassd m0m+-1+1=m+-1+1
199 46 oveq2i m+-1+1=-m+0
200 199 a1i m0m+-1+1=-m+0
201 196 addridd m0-m+0=m
202 198 200 201 3eqtrd m0m+-1+1=m
203 195 202 eqtrd m0-m+1+1=m
204 203 oveq1d m0-m+1+1·˙X=m·˙X
205 204 adantl φY<˙0˙m0-m+1+1·˙X=m·˙X
206 1 5 16 mulgneg WGrpmXBm·˙X=invgWm·˙X
207 77 63 79 206 syl3anc φY<˙0˙m0m·˙X=invgWm·˙X
208 205 207 eqtrd φY<˙0˙m0-m+1+1·˙X=invgWm·˙X
209 208 ad2antrr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙X-m+1+1·˙X=invgWm·˙X
210 209 eqcomd φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XinvgWm·˙X=-m+1+1·˙X
211 192 183 210 3brtr3d φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XY<˙-m+1+1·˙X
212 ovexd φ-m+1+1·˙XV
213 4 3 pltle WoGrpYB-m+1+1·˙XVY<˙-m+1+1·˙XY˙-m+1+1·˙X
214 6 9 212 213 syl3anc φY<˙-m+1+1·˙XY˙-m+1+1·˙X
215 185 211 214 sylc φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙XY˙-m+1+1·˙X
216 oveq1 n=m+1n·˙X=m+1·˙X
217 216 breq1d n=m+1n·˙X<˙Ym+1·˙X<˙Y
218 oveq1 n=m+1n+1=-m+1+1
219 218 oveq1d n=m+1n+1·˙X=-m+1+1·˙X
220 219 breq2d n=m+1Y˙n+1·˙XY˙-m+1+1·˙X
221 217 220 anbi12d n=m+1n·˙X<˙YY˙n+1·˙Xm+1·˙X<˙YY˙-m+1+1·˙X
222 221 rspcev m+1m+1·˙X<˙YY˙-m+1+1·˙Xnn·˙X<˙YY˙n+1·˙X
223 170 184 215 222 syl12anc φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙XinvgWY<˙m+1·˙Xnn·˙X<˙YY˙n+1·˙X
224 1 4 3 tlt2 WTosetm+1·˙XBinvgWYBm+1·˙X˙invgWYinvgWY<˙m+1·˙X
225 149 81 124 224 syl3anc φY<˙0˙m0m+1·˙X˙invgWYinvgWY<˙m+1·˙X
226 225 adantr φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xm+1·˙X˙invgWYinvgWY<˙m+1·˙X
227 168 223 226 mpjaodan φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙Xnn·˙X<˙YY˙n+1·˙X
228 6 adantr φY<˙0˙WoGrp
229 7 adantr φY<˙0˙WArchi
230 8 adantr φY<˙0˙XB
231 123 adantr φY<˙0˙invgWYB
232 10 adantr φY<˙0˙0˙<˙X
233 134 breq1d φinvgWinvgWY<˙0˙Y<˙0˙
234 233 biimpar φY<˙0˙invgWinvgWY<˙0˙
235 1 3 16 2 ogrpinv0lt WoGrpinvgWYB0˙<˙invgWYinvgWinvgWY<˙0˙
236 6 123 235 syl2anc φ0˙<˙invgWYinvgWinvgWY<˙0˙
237 236 biimpar φinvgWinvgWY<˙0˙0˙<˙invgWY
238 234 237 syldan φY<˙0˙0˙<˙invgWY
239 1 2 3 4 5 228 229 230 231 232 238 archirng φY<˙0˙m0m·˙X<˙invgWYinvgWY˙m+1·˙X
240 227 239 r19.29a φY<˙0˙nn·˙X<˙YY˙n+1·˙X
241 nn0ssz 0
242 6 adantr φ0˙<˙YWoGrp
243 7 adantr φ0˙<˙YWArchi
244 8 adantr φ0˙<˙YXB
245 9 adantr φ0˙<˙YYB
246 10 adantr φ0˙<˙Y0˙<˙X
247 simpr φ0˙<˙Y0˙<˙Y
248 1 2 3 4 5 242 243 244 245 246 247 archirng φ0˙<˙Yn0n·˙X<˙YY˙n+1·˙X
249 ssrexv 0n0n·˙X<˙YY˙n+1·˙Xnn·˙X<˙YY˙n+1·˙X
250 241 248 249 mpsyl φ0˙<˙Ynn·˙X<˙YY˙n+1·˙X
251 1 3 tlt3 WTosetYB0˙BY=0˙Y<˙0˙0˙<˙Y
252 33 9 37 251 syl3anc φY=0˙Y<˙0˙0˙<˙Y
253 61 240 250 252 mpjao3dan φnn·˙X<˙YY˙n+1·˙X