Metamath Proof Explorer


Theorem cvgrat

Description: Ratio test for convergence of a complex infinite series. If the ratio A of the absolute values of successive terms in an infinite sequence F is less than 1 for all terms beyond some index B , then the infinite sum of the terms of F converges to a complex number. Equivalent to first part of Exercise 4 of Gleason p. 182. (Contributed by NM, 26-Apr-2005) (Proof shortened by Mario Carneiro, 27-Apr-2014)

Ref Expression
Hypotheses cvgrat.1 Z=M
cvgrat.2 W=N
cvgrat.3 φA
cvgrat.4 φA<1
cvgrat.5 φNZ
cvgrat.6 φkZFk
cvgrat.7 φkWFk+1AFk
Assertion cvgrat φseqM+Fdom

Proof

Step Hyp Ref Expression
1 cvgrat.1 Z=M
2 cvgrat.2 W=N
3 cvgrat.3 φA
4 cvgrat.4 φA<1
5 cvgrat.5 φNZ
6 cvgrat.6 φkZFk
7 cvgrat.7 φkWFk+1AFk
8 5 1 eleqtrdi φNM
9 eluzelz NMN
10 8 9 syl φN
11 uzid NNN
12 10 11 syl φNN
13 12 2 eleqtrrdi φNW
14 oveq1 n=knN=kN
15 14 oveq2d n=kifA00AnN=ifA00AkN
16 eqid nWifA00AnN=nWifA00AnN
17 ovex ifA00AkNV
18 15 16 17 fvmpt kWnWifA00AnNk=ifA00AkN
19 18 adantl φkWnWifA00AnNk=ifA00AkN
20 0re 0
21 ifcl 0AifA00A
22 20 3 21 sylancr φifA00A
23 22 adantr φkWifA00A
24 simpr φkWkW
25 24 2 eleqtrdi φkWkN
26 uznn0sub kNkN0
27 25 26 syl φkWkN0
28 23 27 reexpcld φkWifA00AkN
29 19 28 eqeltrd φkWnWifA00AnNk
30 uzss NMNM
31 8 30 syl φNM
32 31 2 1 3sstr4g φWZ
33 32 sselda φkWkZ
34 33 6 syldan φkWFk
35 26 adantl φkNkN0
36 oveq2 n=kNifA00An=ifA00AkN
37 eqid n0ifA00An=n0ifA00An
38 36 37 17 fvmpt kN0n0ifA00AnkN=ifA00AkN
39 35 38 syl φkNn0ifA00AnkN=ifA00AkN
40 10 zcnd φN
41 eluzelz kNk
42 41 zcnd kNk
43 nn0ex 0V
44 43 mptex n0ifA00AnV
45 44 shftval Nkn0ifA00AnshiftNk=n0ifA00AnkN
46 40 42 45 syl2an φkNn0ifA00AnshiftNk=n0ifA00AnkN
47 simpr φkNkN
48 47 2 eleqtrrdi φkNkW
49 48 18 syl φkNnWifA00AnNk=ifA00AkN
50 39 46 49 3eqtr4rd φkNnWifA00AnNk=n0ifA00AnshiftNk
51 10 50 seqfeq φseqN+nWifA00AnN=seqN+n0ifA00AnshiftN
52 44 seqshft NNseqN+n0ifA00AnshiftN=seqNN+n0ifA00AnshiftN
53 10 10 52 syl2anc φseqN+n0ifA00AnshiftN=seqNN+n0ifA00AnshiftN
54 40 subidd φNN=0
55 54 seqeq1d φseqNN+n0ifA00An=seq0+n0ifA00An
56 55 oveq1d φseqNN+n0ifA00AnshiftN=seq0+n0ifA00AnshiftN
57 51 53 56 3eqtrd φseqN+nWifA00AnN=seq0+n0ifA00AnshiftN
58 22 recnd φifA00A
59 max2 A00ifA00A
60 3 20 59 sylancl φ0ifA00A
61 22 60 absidd φifA00A=ifA00A
62 0lt1 0<1
63 breq1 0=ifA00A0<1ifA00A<1
64 breq1 A=ifA00AA<1ifA00A<1
65 63 64 ifboth 0<1A<1ifA00A<1
66 62 4 65 sylancr φifA00A<1
67 61 66 eqbrtrd φifA00A<1
68 oveq2 n=kifA00An=ifA00Ak
69 ovex ifA00AkV
70 68 37 69 fvmpt k0n0ifA00Ank=ifA00Ak
71 70 adantl φk0n0ifA00Ank=ifA00Ak
72 58 67 71 geolim φseq0+n0ifA00An11ifA00A
73 seqex seq0+n0ifA00AnV
74 climshft Nseq0+n0ifA00AnVseq0+n0ifA00AnshiftN11ifA00Aseq0+n0ifA00An11ifA00A
75 10 73 74 sylancl φseq0+n0ifA00AnshiftN11ifA00Aseq0+n0ifA00An11ifA00A
76 72 75 mpbird φseq0+n0ifA00AnshiftN11ifA00A
77 ovex seq0+n0ifA00AnshiftNV
78 ovex 11ifA00AV
79 77 78 breldm seq0+n0ifA00AnshiftN11ifA00Aseq0+n0ifA00AnshiftNdom
80 76 79 syl φseq0+n0ifA00AnshiftNdom
81 57 80 eqeltrd φseqN+nWifA00AnNdom
82 fveq2 k=NFk=FN
83 82 eleq1d k=NFkFN
84 6 ralrimiva φkZFk
85 83 84 5 rspcdva φFN
86 85 abscld φFN
87 2fveq3 n=NFn=FN
88 oveq1 n=NnN=NN
89 88 oveq2d n=NifA00AnN=ifA00ANN
90 89 oveq2d n=NFNifA00AnN=FNifA00ANN
91 87 90 breq12d n=NFnFNifA00AnNFNFNifA00ANN
92 91 imbi2d n=NφFnFNifA00AnNφFNFNifA00ANN
93 2fveq3 n=kFn=Fk
94 15 oveq2d n=kFNifA00AnN=FNifA00AkN
95 93 94 breq12d n=kFnFNifA00AnNFkFNifA00AkN
96 95 imbi2d n=kφFnFNifA00AnNφFkFNifA00AkN
97 2fveq3 n=k+1Fn=Fk+1
98 oveq1 n=k+1nN=k+1-N
99 98 oveq2d n=k+1ifA00AnN=ifA00Ak+1-N
100 99 oveq2d n=k+1FNifA00AnN=FNifA00Ak+1-N
101 97 100 breq12d n=k+1FnFNifA00AnNFk+1FNifA00Ak+1-N
102 101 imbi2d n=k+1φFnFNifA00AnNφFk+1FNifA00Ak+1-N
103 86 leidd φFNFN
104 54 oveq2d φifA00ANN=ifA00A0
105 58 exp0d φifA00A0=1
106 104 105 eqtrd φifA00ANN=1
107 106 oveq2d φFNifA00ANN=FN1
108 86 recnd φFN
109 108 mulridd φFN1=FN
110 107 109 eqtrd φFNifA00ANN=FN
111 103 110 breqtrrd φFNFNifA00ANN
112 34 abscld φkWFk
113 86 adantr φkWFN
114 113 28 remulcld φkWFNifA00AkN
115 60 adantr φkW0ifA00A
116 lemul2a FkFNifA00AkNifA00A0ifA00AFkFNifA00AkNifA00AFkifA00AFNifA00AkN
117 116 ex FkFNifA00AkNifA00A0ifA00AFkFNifA00AkNifA00AFkifA00AFNifA00AkN
118 112 114 23 115 117 syl112anc φkWFkFNifA00AkNifA00AFkifA00AFNifA00AkN
119 58 adantr φkWifA00A
120 108 adantr φkWFN
121 28 recnd φkWifA00AkN
122 119 120 121 mul12d φkWifA00AFNifA00AkN=FNifA00AifA00AkN
123 119 27 expp1d φkWifA00Ak-N+1=ifA00AkNifA00A
124 42 2 eleq2s kWk
125 ax-1cn 1
126 addsub k1Nk+1-N=k-N+1
127 125 126 mp3an2 kNk+1-N=k-N+1
128 124 40 127 syl2anr φkWk+1-N=k-N+1
129 128 oveq2d φkWifA00Ak+1-N=ifA00Ak-N+1
130 119 121 mulcomd φkWifA00AifA00AkN=ifA00AkNifA00A
131 123 129 130 3eqtr4rd φkWifA00AifA00AkN=ifA00Ak+1-N
132 131 oveq2d φkWFNifA00AifA00AkN=FNifA00Ak+1-N
133 122 132 eqtrd φkWifA00AFNifA00AkN=FNifA00Ak+1-N
134 133 breq2d φkWifA00AFkifA00AFNifA00AkNifA00AFkFNifA00Ak+1-N
135 118 134 sylibd φkWFkFNifA00AkNifA00AFkFNifA00Ak+1-N
136 fveq2 n=k+1Fn=Fk+1
137 136 eleq1d n=k+1FnFk+1
138 fveq2 k=nFk=Fn
139 138 eleq1d k=nFkFn
140 139 cbvralvw kZFknZFn
141 84 140 sylib φnZFn
142 141 adantr φkWnZFn
143 2 peano2uzs kWk+1W
144 32 sselda φk+1Wk+1Z
145 143 144 sylan2 φkWk+1Z
146 137 142 145 rspcdva φkWFk+1
147 146 abscld φkWFk+1
148 3 adantr φkWA
149 148 112 remulcld φkWAFk
150 23 112 remulcld φkWifA00AFk
151 34 absge0d φkW0Fk
152 max1 A0AifA00A
153 3 20 152 sylancl φAifA00A
154 153 adantr φkWAifA00A
155 148 23 112 151 154 lemul1ad φkWAFkifA00AFk
156 147 149 150 7 155 letrd φkWFk+1ifA00AFk
157 peano2uz kNk+1N
158 25 157 syl φkWk+1N
159 uznn0sub k+1Nk+1-N0
160 158 159 syl φkWk+1-N0
161 23 160 reexpcld φkWifA00Ak+1-N
162 113 161 remulcld φkWFNifA00Ak+1-N
163 letr Fk+1ifA00AFkFNifA00Ak+1-NFk+1ifA00AFkifA00AFkFNifA00Ak+1-NFk+1FNifA00Ak+1-N
164 147 150 162 163 syl3anc φkWFk+1ifA00AFkifA00AFkFNifA00Ak+1-NFk+1FNifA00Ak+1-N
165 156 164 mpand φkWifA00AFkFNifA00Ak+1-NFk+1FNifA00Ak+1-N
166 135 165 syld φkWFkFNifA00AkNFk+1FNifA00Ak+1-N
167 48 166 syldan φkNFkFNifA00AkNFk+1FNifA00Ak+1-N
168 167 expcom kNφFkFNifA00AkNFk+1FNifA00Ak+1-N
169 168 a2d kNφFkFNifA00AkNφFk+1FNifA00Ak+1-N
170 92 96 102 96 111 169 uzind4i kNφFkFNifA00AkN
171 170 impcom φkNFkFNifA00AkN
172 49 oveq2d φkNFNnWifA00AnNk=FNifA00AkN
173 171 172 breqtrrd φkNFkFNnWifA00AnNk
174 2 13 29 34 81 86 173 cvgcmpce φseqN+Fdom
175 1 5 6 iserex φseqM+FdomseqN+Fdom
176 174 175 mpbird φseqM+Fdom