Metamath Proof Explorer


Theorem dchrisum0

Description: The sum sum_ n e. NN , X ( n ) / n is nonzero for all non-principal Dirichlet characters (i.e. the assumption X e. W is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 and dchrvmasumif . Lemma 9.4.4 of Shapiro, p. 382. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
rpvmasum2.w W=yD1˙|myLmm=0
dchrisum0.b φXW
Assertion dchrisum0 ¬φ

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 rpvmasum2.w W=yD1˙|myLmm=0
8 dchrisum0.b φXW
9 eqid byi|ibXLy=byi|ibXLy
10 7 ssrab3 WD1˙
11 difss D1˙D
12 10 11 sstri WD
13 12 8 sselid φXD
14 1 2 3 4 5 6 7 8 dchrisum0re φX:BaseZ
15 fveq2 k=mdk=md
16 15 oveq2d k=mdXLmk=XLmmd
17 rpre x+x
18 17 adantl φx+x
19 13 ad3antrrr φx+k1xmi|ikXD
20 elrabi mi|ikm
21 20 nnzd mi|ikm
22 21 adantl φx+k1xmi|ikm
23 4 1 5 2 19 22 dchrzrhcl φx+k1xmi|ikXLm
24 elfznn k1xk
25 24 adantl φx+k1xk
26 25 nnrpd φx+k1xk+
27 26 rpsqrtcld φx+k1xk+
28 27 rpcnd φx+k1xk
29 28 adantr φx+k1xmi|ikk
30 27 rpne0d φx+k1xk0
31 30 adantr φx+k1xmi|ikk0
32 23 29 31 divcld φx+k1xmi|ikXLmk
33 32 anasss φx+k1xmi|ikXLmk
34 16 18 33 dvdsflsumcom φx+k=1xmi|ikXLmk=m=1xd=1xmXLmmd
35 1 2 3 4 5 6 9 dchrisum0fval kbyi|ibXLyk=mi|ikXLm
36 25 35 syl φx+k1xbyi|ibXLyk=mi|ikXLm
37 36 oveq1d φx+k1xbyi|ibXLykk=mi|ikXLmk
38 fzfid φx+k1x1kFin
39 dvdsssfz1 ki|ik1k
40 25 39 syl φx+k1xi|ik1k
41 38 40 ssfid φx+k1xi|ikFin
42 41 28 23 30 fsumdivc φx+k1xmi|ikXLmk=mi|ikXLmk
43 37 42 eqtrd φx+k1xbyi|ibXLykk=mi|ikXLmk
44 43 sumeq2dv φx+k=1xbyi|ibXLykk=k=1xmi|ikXLmk
45 rprege0 x+x0x
46 45 adantl φx+x0x
47 resqrtth x0xx2=x
48 46 47 syl φx+x2=x
49 48 fveq2d φx+x2=x
50 49 oveq2d φx+1x2=1x
51 48 fvoveq1d φx+x2m=xm
52 51 oveq2d φx+1x2m=1xm
53 52 sumeq1d φx+d=1x2mXLmmd=d=1xmXLmmd
54 53 adantr φx+m1x2d=1x2mXLmmd=d=1xmXLmmd
55 50 54 sumeq12dv φx+m=1x2d=1x2mXLmmd=m=1xd=1xmXLmmd
56 34 44 55 3eqtr4d φx+k=1xbyi|ibXLykk=m=1x2d=1x2mXLmmd
57 56 mpteq2dva φx+k=1xbyi|ibXLykk=x+m=1x2d=1x2mXLmmd
58 rpsqrtcl x+x+
59 58 adantl φx+x+
60 eqidd φx+x=x+x
61 eqidd φz+m=1z2d=1z2mXLmmd=z+m=1z2d=1z2mXLmmd
62 oveq1 z=xz2=x2
63 62 fveq2d z=xz2=x2
64 63 oveq2d z=x1z2=1x2
65 62 fvoveq1d z=xz2m=x2m
66 65 oveq2d z=x1z2m=1x2m
67 66 sumeq1d z=xd=1z2mXLmmd=d=1x2mXLmmd
68 67 adantr z=xm1z2d=1z2mXLmmd=d=1x2mXLmmd
69 64 68 sumeq12dv z=xm=1z2d=1z2mXLmmd=m=1x2d=1x2mXLmmd
70 59 60 61 69 fmptco φz+m=1z2d=1z2mXLmmdx+x=x+m=1x2d=1x2mXLmmd
71 57 70 eqtr4d φx+k=1xbyi|ibXLykk=z+m=1z2d=1z2mXLmmdx+x
72 eqid aXLaa=aXLaa
73 1 2 3 4 5 6 7 8 72 dchrisum0lema φtc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcy
74 3 adantr φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyN
75 8 adantr φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyXW
76 simprl φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyc0+∞
77 simprrl φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyseq1+aXLaat
78 simprrr φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyy1+∞seq1+aXLaaytcy
79 1 2 74 4 5 6 7 75 72 76 77 78 dchrisum0lem3 φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyz+m=1z2d=1z2mXLmmd𝑂1
80 79 rexlimdvaa φc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyz+m=1z2d=1z2mXLmmd𝑂1
81 80 exlimdv φtc0+∞seq1+aXLaaty1+∞seq1+aXLaaytcyz+m=1z2d=1z2mXLmmd𝑂1
82 73 81 mpd φz+m=1z2d=1z2mXLmmd𝑂1
83 o1f z+m=1z2d=1z2mXLmmd𝑂1z+m=1z2d=1z2mXLmmd:domz+m=1z2d=1z2mXLmmd
84 82 83 syl φz+m=1z2d=1z2mXLmmd:domz+m=1z2d=1z2mXLmmd
85 sumex m=1z2d=1z2mXLmmdV
86 eqid z+m=1z2d=1z2mXLmmd=z+m=1z2d=1z2mXLmmd
87 85 86 dmmpti domz+m=1z2d=1z2mXLmmd=+
88 87 feq2i z+m=1z2d=1z2mXLmmd:domz+m=1z2d=1z2mXLmmdz+m=1z2d=1z2mXLmmd:+
89 84 88 sylib φz+m=1z2d=1z2mXLmmd:+
90 rpssre +
91 90 a1i φ+
92 resqcl tt2
93 0red φtx+t2x0
94 simplr φtx+t2xt
95 simplrr φtx+t2x0tt2x
96 45 ad2antrl φtx+t2xx0x
97 96 adantr φtx+t2x0tx0x
98 97 47 syl φtx+t2x0tx2=x
99 95 98 breqtrrd φtx+t2x0tt2x2
100 94 adantr φtx+t2x0tt
101 59 rpred φx+x
102 101 ad2ant2r φtx+t2xx
103 102 adantr φtx+t2x0tx
104 simpr φtx+t2x0t0t
105 sqrtge0 x0x0x
106 96 105 syl φtx+t2x0x
107 106 adantr φtx+t2x0t0x
108 100 103 104 107 le2sqd φtx+t2x0ttxt2x2
109 99 108 mpbird φtx+t2x0ttx
110 94 adantr φtx+t2xt0t
111 0red φtx+t2xt00
112 102 adantr φtx+t2xt0x
113 simpr φtx+t2xt0t0
114 106 adantr φtx+t2xt00x
115 110 111 112 113 114 letrd φtx+t2xt0tx
116 93 94 109 115 lecasei φtx+t2xtx
117 116 expr φtx+t2xtx
118 117 ralrimiva φtx+t2xtx
119 breq1 c=t2cxt2x
120 119 rspceaimv t2x+t2xtxcx+cxtx
121 92 118 120 syl2an2 φtcx+cxtx
122 89 82 59 91 121 o1compt φz+m=1z2d=1z2mXLmmdx+x𝑂1
123 71 122 eqeltrd φx+k=1xbyi|ibXLykk𝑂1
124 1 2 3 4 5 6 9 13 14 123 dchrisum0fno1 ¬φ