Metamath Proof Explorer


Theorem dchrisum0flblem2

Description: Lemma for dchrisum0flb . Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
dchrisum0f.f F=bvq|qbXLv
dchrisum0f.x φXD
dchrisum0flb.r φX:BaseZ
dchrisum0flb.1 φA2
dchrisum0flb.2 φP
dchrisum0flb.3 φPA
dchrisum0flb.4 φy1..^Aify10Fy
Assertion dchrisum0flblem2 φifA10FA

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 dchrisum0f.f F=bvq|qbXLv
8 dchrisum0f.x φXD
9 dchrisum0flb.r φX:BaseZ
10 dchrisum0flb.1 φA2
11 dchrisum0flb.2 φP
12 dchrisum0flb.3 φPA
13 dchrisum0flb.4 φy1..^Aify10Fy
14 breq1 1=ifA101FPPpCntAFAPPpCntAifA10FPPpCntAFAPPpCntA
15 breq1 0=ifA100FPPpCntAFAPPpCntAifA10FPPpCntAFAPPpCntA
16 1t1e1 11=1
17 11 adantr φAP
18 nnq AA
19 18 adantl φAA
20 nnne0 AA0
21 20 adantl φAA0
22 2z 2
23 22 a1i φA2
24 pcexp PAA02PpCntA2=2PpCntA
25 17 19 21 23 24 syl121anc φAPpCntA2=2PpCntA
26 eluz2nn A2A
27 10 26 syl φA
28 27 nncnd φA
29 28 adantr φAA
30 29 sqsqrtd φAA2=A
31 30 oveq2d φAPpCntA2=PpCntA
32 2cnd φA2
33 simpr φAA
34 17 33 pccld φAPpCntA0
35 34 nn0cnd φAPpCntA
36 32 35 mulcomd φA2PpCntA=PpCntA2
37 25 31 36 3eqtr3rd φAPpCntA2=PpCntA
38 37 oveq2d φAPPpCntA2=PPpCntA
39 prmnn PP
40 17 39 syl φAP
41 40 nncnd φAP
42 2nn0 20
43 42 a1i φA20
44 41 43 34 expmuld φAPPpCntA2=PPpCntA2
45 38 44 eqtr3d φAPPpCntA=PPpCntA2
46 45 fveq2d φAPPpCntA=PPpCntA2
47 40 34 nnexpcld φAPPpCntA
48 47 nnrpd φAPPpCntA+
49 48 rprege0d φAPPpCntA0PPpCntA
50 sqrtsq PPpCntA0PPpCntAPPpCntA2=PPpCntA
51 49 50 syl φAPPpCntA2=PPpCntA
52 46 51 eqtrd φAPPpCntA=PPpCntA
53 52 47 eqeltrd φAPPpCntA
54 53 iftrued φAifPPpCntA10=1
55 11 27 pccld φPpCntA0
56 1 2 3 4 5 6 7 8 9 11 55 dchrisum0flblem1 φifPPpCntA10FPPpCntA
57 56 adantr φAifPPpCntA10FPPpCntA
58 54 57 eqbrtrrd φA1FPPpCntA
59 pcdvds PAPPpCntAA
60 11 27 59 syl2anc φPPpCntAA
61 11 39 syl φP
62 61 55 nnexpcld φPPpCntA
63 nndivdvds APPpCntAPPpCntAAAPPpCntA
64 27 62 63 syl2anc φPPpCntAAAPPpCntA
65 60 64 mpbid φAPPpCntA
66 65 nnzd φAPPpCntA
67 66 adantr φAAPPpCntA
68 27 adantr φAA
69 68 nnrpd φAA+
70 69 rprege0d φAA0A
71 62 adantr φAPPpCntA
72 71 nnrpd φAPPpCntA+
73 sqrtdiv A0APPpCntA+APPpCntA=APPpCntA
74 70 72 73 syl2anc φAAPPpCntA=APPpCntA
75 nnz AA
76 znq APPpCntAAPPpCntA
77 75 53 76 syl2an2 φAAPPpCntA
78 74 77 eqeltrd φAAPPpCntA
79 zsqrtelqelz APPpCntAAPPpCntAAPPpCntA
80 67 78 79 syl2anc φAAPPpCntA
81 65 adantr φAAPPpCntA
82 81 nnrpd φAAPPpCntA+
83 82 sqrtgt0d φA0<APPpCntA
84 elnnz APPpCntAAPPpCntA0<APPpCntA
85 80 83 84 sylanbrc φAAPPpCntA
86 85 iftrued φAifAPPpCntA10=1
87 fveq2 y=APPpCntAy=APPpCntA
88 87 eleq1d y=APPpCntAyAPPpCntA
89 88 ifbid y=APPpCntAify10=ifAPPpCntA10
90 fveq2 y=APPpCntAFy=FAPPpCntA
91 89 90 breq12d y=APPpCntAify10FyifAPPpCntA10FAPPpCntA
92 nnuz =1
93 65 92 eleqtrdi φAPPpCntA1
94 27 nnzd φA
95 61 nnred φP
96 pcelnn PAPpCntAPA
97 11 27 96 syl2anc φPpCntAPA
98 12 97 mpbird φPpCntA
99 prmuz2 PP2
100 eluz2gt1 P21<P
101 11 99 100 3syl φ1<P
102 expgt1 PPpCntA1<P1<PPpCntA
103 95 98 101 102 syl3anc φ1<PPpCntA
104 1red φ1
105 0lt1 0<1
106 105 a1i φ0<1
107 62 nnred φPPpCntA
108 62 nngt0d φ0<PPpCntA
109 27 nnred φA
110 27 nngt0d φ0<A
111 ltdiv2 10<1PPpCntA0<PPpCntAA0<A1<PPpCntAAPPpCntA<A1
112 104 106 107 108 109 110 111 syl222anc φ1<PPpCntAAPPpCntA<A1
113 103 112 mpbid φAPPpCntA<A1
114 28 div1d φA1=A
115 113 114 breqtrd φAPPpCntA<A
116 elfzo2 APPpCntA1..^AAPPpCntA1AAPPpCntA<A
117 93 94 115 116 syl3anbrc φAPPpCntA1..^A
118 91 13 117 rspcdva φifAPPpCntA10FAPPpCntA
119 118 adantr φAifAPPpCntA10FAPPpCntA
120 86 119 eqbrtrrd φA1FAPPpCntA
121 1re 1
122 0le1 01
123 121 122 pm3.2i 101
124 123 a1i φA101
125 1 2 3 4 5 6 7 8 9 dchrisum0ff φF:
126 125 62 ffvelcdmd φFPPpCntA
127 126 adantr φAFPPpCntA
128 125 65 ffvelcdmd φFAPPpCntA
129 128 adantr φAFAPPpCntA
130 lemul12a 101FPPpCntA101FAPPpCntA1FPPpCntA1FAPPpCntA11FPPpCntAFAPPpCntA
131 124 127 124 129 130 syl22anc φA1FPPpCntA1FAPPpCntA11FPPpCntAFAPPpCntA
132 58 120 131 mp2and φA11FPPpCntAFAPPpCntA
133 16 132 eqbrtrrid φA1FPPpCntAFAPPpCntA
134 0red φ0
135 0re 0
136 121 135 ifcli ifPPpCntA10
137 136 a1i φifPPpCntA10
138 breq2 1=ifPPpCntA10010ifPPpCntA10
139 breq2 0=ifPPpCntA10000ifPPpCntA10
140 0le0 00
141 138 139 122 140 keephyp 0ifPPpCntA10
142 141 a1i φ0ifPPpCntA10
143 134 137 126 142 56 letrd φ0FPPpCntA
144 121 135 ifcli ifAPPpCntA10
145 144 a1i φifAPPpCntA10
146 breq2 1=ifAPPpCntA10010ifAPPpCntA10
147 breq2 0=ifAPPpCntA10000ifAPPpCntA10
148 146 147 122 140 keephyp 0ifAPPpCntA10
149 148 a1i φ0ifAPPpCntA10
150 134 145 128 149 118 letrd φ0FAPPpCntA
151 126 128 143 150 mulge0d φ0FPPpCntAFAPPpCntA
152 151 adantr φ¬A0FPPpCntAFAPPpCntA
153 14 15 133 152 ifbothda φifA10FPPpCntAFAPPpCntA
154 62 nncnd φPPpCntA
155 62 nnne0d φPPpCntA0
156 28 154 155 divcan2d φPPpCntAAPPpCntA=A
157 156 fveq2d φFPPpCntAAPPpCntA=FA
158 pcndvds2 PA¬PAPPpCntA
159 11 27 158 syl2anc φ¬PAPPpCntA
160 coprm PAPPpCntA¬PAPPpCntAPgcdAPPpCntA=1
161 11 66 160 syl2anc φ¬PAPPpCntAPgcdAPPpCntA=1
162 159 161 mpbid φPgcdAPPpCntA=1
163 prmz PP
164 11 163 syl φP
165 rpexp1i PAPPpCntAPpCntA0PgcdAPPpCntA=1PPpCntAgcdAPPpCntA=1
166 164 66 55 165 syl3anc φPgcdAPPpCntA=1PPpCntAgcdAPPpCntA=1
167 162 166 mpd φPPpCntAgcdAPPpCntA=1
168 1 2 3 4 5 6 7 8 62 65 167 dchrisum0fmul φFPPpCntAAPPpCntA=FPPpCntAFAPPpCntA
169 157 168 eqtr3d φFA=FPPpCntAFAPPpCntA
170 153 169 breqtrrd φifA10FA