Metamath Proof Explorer


Theorem dchrisumlem1

Description: Lemma for dchrisum . Lemma 9.4.1 of Shapiro, p. 377. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.g G=DChrN
rpvmasum.d D=BaseG
rpvmasum.1 1˙=0G
dchrisum.b φXD
dchrisum.n1 φX1˙
dchrisum.2 n=xA=B
dchrisum.3 φM
dchrisum.4 φn+A
dchrisum.5 φn+x+MnnxBA
dchrisum.6 φn+A0
dchrisum.7 F=nXLnA
dchrisum.9 φR
dchrisum.10 φu0..^Nn0..^uXLnR
Assertion dchrisumlem1 φU0n0..^UXLnR

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.g G=DChrN
5 rpvmasum.d D=BaseG
6 rpvmasum.1 1˙=0G
7 dchrisum.b φXD
8 dchrisum.n1 φX1˙
9 dchrisum.2 n=xA=B
10 dchrisum.3 φM
11 dchrisum.4 φn+A
12 dchrisum.5 φn+x+MnnxBA
13 dchrisum.6 φn+A0
14 dchrisum.7 F=nXLnA
15 dchrisum.9 φR
16 dchrisum.10 φu0..^Nn0..^uXLnR
17 fzodisj 0..^NUNNUN..^U=
18 17 a1i φU00..^NUNNUN..^U=
19 3 nnnn0d φN0
20 19 adantr φU0N0
21 nn0re U0U
22 21 adantl φU0U
23 3 adantr φU0N
24 22 23 nndivred φU0UN
25 23 nnrpd φU0N+
26 nn0ge0 U00U
27 26 adantl φU00U
28 22 25 27 divge0d φU00UN
29 flge0nn0 UN0UNUN0
30 24 28 29 syl2anc φU0UN0
31 20 30 nn0mulcld φU0NUN0
32 flle UNUNUN
33 24 32 syl φU0UNUN
34 reflcl UNUN
35 24 34 syl φU0UN
36 35 22 25 lemuldiv2d φU0NUNUUNUN
37 33 36 mpbird φU0NUNU
38 fznn0 U0NUN0UNUN0NUNU
39 38 adantl φU0NUN0UNUN0NUNU
40 31 37 39 mpbir2and φU0NUN0U
41 fzosplit NUN0U0..^U=0..^NUNNUN..^U
42 40 41 syl φU00..^U=0..^NUNNUN..^U
43 fzofi 0..^UFin
44 43 a1i φU00..^UFin
45 7 ad2antrr φU0n0..^UXD
46 elfzoelz n0..^Un
47 46 adantl φU0n0..^Un
48 4 1 5 2 45 47 dchrzrhcl φU0n0..^UXLn
49 18 42 44 48 fsumsplit φU0n0..^UXLn=n0..^NUNXLn+nNUN..^UXLn
50 oveq2 k=0Nk= N0
51 50 oveq2d k=00..^Nk=0..^ N0
52 51 sumeq1d k=0n0..^NkXLn=n0..^ N0XLn
53 52 eqeq1d k=0n0..^NkXLn=0n0..^ N0XLn=0
54 53 imbi2d k=0φn0..^NkXLn=0φn0..^ N0XLn=0
55 oveq2 k=mNk=Nm
56 55 oveq2d k=m0..^Nk=0..^Nm
57 56 sumeq1d k=mn0..^NkXLn=n0..^NmXLn
58 57 eqeq1d k=mn0..^NkXLn=0n0..^NmXLn=0
59 58 imbi2d k=mφn0..^NkXLn=0φn0..^NmXLn=0
60 oveq2 k=m+1Nk=Nm+1
61 60 oveq2d k=m+10..^Nk=0..^Nm+1
62 61 sumeq1d k=m+1n0..^NkXLn=n0..^Nm+1XLn
63 62 eqeq1d k=m+1n0..^NkXLn=0n0..^Nm+1XLn=0
64 63 imbi2d k=m+1φn0..^NkXLn=0φn0..^Nm+1XLn=0
65 oveq2 k=UNNk=NUN
66 65 oveq2d k=UN0..^Nk=0..^NUN
67 66 sumeq1d k=UNn0..^NkXLn=n0..^NUNXLn
68 67 eqeq1d k=UNn0..^NkXLn=0n0..^NUNXLn=0
69 68 imbi2d k=UNφn0..^NkXLn=0φn0..^NUNXLn=0
70 3 nncnd φN
71 70 mul01d φ N0=0
72 71 oveq2d φ0..^ N0=0..^0
73 fzo0 0..^0=
74 72 73 eqtrdi φ0..^ N0=
75 74 sumeq1d φn0..^ N0XLn=nXLn
76 sum0 nXLn=0
77 75 76 eqtrdi φn0..^ N0XLn=0
78 oveq1 n0..^NmXLn=0n0..^NmXLn+nNm..^Nm+1XLn=0+nNm..^Nm+1XLn
79 fzodisj 0..^NmNm..^Nm+1=
80 79 a1i φm00..^NmNm..^Nm+1=
81 nn0re m0m
82 81 adantl φm0m
83 82 lep1d φm0mm+1
84 peano2re mm+1
85 82 84 syl φm0m+1
86 3 adantr φm0N
87 86 nnred φm0N
88 86 nngt0d φm00<N
89 lemul2 mm+1N0<Nmm+1NmNm+1
90 82 85 87 88 89 syl112anc φm0mm+1NmNm+1
91 83 90 mpbid φm0NmNm+1
92 nn0mulcl N0m0Nm0
93 19 92 sylan φm0Nm0
94 nn0uz 0=0
95 93 94 eleqtrdi φm0Nm0
96 nn0p1nn m0m+1
97 nnmulcl Nm+1Nm+1
98 3 96 97 syl2an φm0Nm+1
99 98 nnzd φm0Nm+1
100 elfz5 Nm0Nm+1Nm0Nm+1NmNm+1
101 95 99 100 syl2anc φm0Nm0Nm+1NmNm+1
102 91 101 mpbird φm0Nm0Nm+1
103 fzosplit Nm0Nm+10..^Nm+1=0..^NmNm..^Nm+1
104 102 103 syl φm00..^Nm+1=0..^NmNm..^Nm+1
105 fzofi 0..^Nm+1Fin
106 105 a1i φm00..^Nm+1Fin
107 7 ad2antrr φm0n0..^Nm+1XD
108 elfzoelz n0..^Nm+1n
109 108 adantl φm0n0..^Nm+1n
110 4 1 5 2 107 109 dchrzrhcl φm0n0..^Nm+1XLn
111 80 104 106 110 fsumsplit φm0n0..^Nm+1XLn=n0..^NmXLn+nNm..^Nm+1XLn
112 86 nncnd φm0N
113 82 recnd φm0m
114 1cnd φm01
115 112 113 114 adddid φm0Nm+1=Nm+ N1
116 112 mulridd φm0 N1=N
117 116 oveq2d φm0Nm+ N1=Nm+N
118 115 117 eqtrd φm0Nm+1=Nm+N
119 118 oveq2d φm0Nm..^Nm+1=Nm..^Nm+N
120 119 sumeq1d φm0nNm..^Nm+1XLn=nNm..^Nm+NXLn
121 oveq2 k=NNm+k=Nm+N
122 121 oveq2d k=NNm..^Nm+k=Nm..^Nm+N
123 122 sumeq1d k=NnNm..^Nm+kXLn=nNm..^Nm+NXLn
124 oveq2 k=N0..^k=0..^N
125 124 sumeq1d k=Nn0..^kXLn=n0..^NXLn
126 123 125 eqeq12d k=NnNm..^Nm+kXLn=n0..^kXLnnNm..^Nm+NXLn=n0..^NXLn
127 93 nn0zd φm0Nm
128 127 adantr φm0k0Nm
129 nn0z k0k
130 zaddcl NmkNm+k
131 127 129 130 syl2an φm0k0Nm+k
132 peano2zm Nm+kNm+k-1
133 131 132 syl φm0k0Nm+k-1
134 7 ad3antrrr φm0k0nNmNm+k-1XD
135 elfzelz nNmNm+k-1n
136 135 adantl φm0k0nNmNm+k-1n
137 4 1 5 2 134 136 dchrzrhcl φm0k0nNmNm+k-1XLn
138 2fveq3 n=i+NmXLn=XLi+Nm
139 128 128 133 137 138 fsumshftm φm0k0n=NmNm+k-1XLn=i=NmNmNm+k-1-NmXLi+Nm
140 fzoval Nm+kNm..^Nm+k=NmNm+k-1
141 131 140 syl φm0k0Nm..^Nm+k=NmNm+k-1
142 141 sumeq1d φm0k0nNm..^Nm+kXLn=n=NmNm+k-1XLn
143 129 adantl φm0k0k
144 fzoval k0..^k=0k1
145 143 144 syl φm0k00..^k=0k1
146 128 zcnd φm0k0Nm
147 146 subidd φm0k0NmNm=0
148 131 zcnd φm0k0Nm+k
149 1cnd φm0k01
150 148 149 146 sub32d φm0k0Nm+k-1-Nm=Nm+k-Nm-1
151 nn0cn k0k
152 151 adantl φm0k0k
153 146 152 pncan2d φm0k0Nm+k-Nm=k
154 153 oveq1d φm0k0Nm+k-Nm-1=k1
155 150 154 eqtrd φm0k0Nm+k-1-Nm=k1
156 147 155 oveq12d φm0k0NmNmNm+k-1-Nm=0k1
157 145 156 eqtr4d φm0k00..^k=NmNmNm+k-1-Nm
158 157 sumeq1d φm0k0i0..^kXLi+Nm=i=NmNmNm+k-1-NmXLi+Nm
159 139 142 158 3eqtr4d φm0k0nNm..^Nm+kXLn=i0..^kXLi+Nm
160 3 nnzd φN
161 nn0z m0m
162 dvdsmul1 NmNNm
163 160 161 162 syl2an φm0NNm
164 163 ad2antrr φm0k0i0..^kNNm
165 elfzoelz i0..^ki
166 165 adantl φm0k0i0..^ki
167 166 zcnd φm0k0i0..^ki
168 146 adantr φm0k0i0..^kNm
169 167 168 pncan2d φm0k0i0..^ki+Nm-i=Nm
170 164 169 breqtrrd φm0k0i0..^kNi+Nm-i
171 86 nnnn0d φm0N0
172 171 ad2antrr φm0k0i0..^kN0
173 zaddcl iNmi+Nm
174 165 128 173 syl2anr φm0k0i0..^ki+Nm
175 1 2 zndvds N0i+NmiLi+Nm=LiNi+Nm-i
176 172 174 166 175 syl3anc φm0k0i0..^kLi+Nm=LiNi+Nm-i
177 170 176 mpbird φm0k0i0..^kLi+Nm=Li
178 177 fveq2d φm0k0i0..^kXLi+Nm=XLi
179 178 sumeq2dv φm0k0i0..^kXLi+Nm=i0..^kXLi
180 2fveq3 i=nXLi=XLn
181 180 cbvsumv i0..^kXLi=n0..^kXLn
182 179 181 eqtrdi φm0k0i0..^kXLi+Nm=n0..^kXLn
183 159 182 eqtrd φm0k0nNm..^Nm+kXLn=n0..^kXLn
184 183 ralrimiva φm0k0nNm..^Nm+kXLn=n0..^kXLn
185 126 184 171 rspcdva φm0nNm..^Nm+NXLn=n0..^NXLn
186 fveq2 k=LnXk=XLn
187 3 nnne0d φN0
188 ifnefalse N0ifN=00..^N=0..^N
189 187 188 syl φifN=00..^N=0..^N
190 fzofi 0..^NFin
191 189 190 eqeltrdi φifN=00..^NFin
192 eqid BaseZ=BaseZ
193 2 reseq1i LifN=00..^N=ℤRHomZifN=00..^N
194 eqid ifN=00..^N=ifN=00..^N
195 1 192 193 194 znf1o N0LifN=00..^N:ifN=00..^N1-1 ontoBaseZ
196 19 195 syl φLifN=00..^N:ifN=00..^N1-1 ontoBaseZ
197 fvres nifN=00..^NLifN=00..^Nn=Ln
198 197 adantl φnifN=00..^NLifN=00..^Nn=Ln
199 4 1 5 192 7 dchrf φX:BaseZ
200 199 ffvelcdmda φkBaseZXk
201 186 191 196 198 200 fsumf1o φkBaseZXk=nifN=00..^NXLn
202 4 1 5 6 7 192 dchrsum φkBaseZXk=ifX=1˙ϕN0
203 ifnefalse X1˙ifX=1˙ϕN0=0
204 8 203 syl φifX=1˙ϕN0=0
205 202 204 eqtrd φkBaseZXk=0
206 189 sumeq1d φnifN=00..^NXLn=n0..^NXLn
207 201 205 206 3eqtr3rd φn0..^NXLn=0
208 207 adantr φm0n0..^NXLn=0
209 120 185 208 3eqtrd φm0nNm..^Nm+1XLn=0
210 209 oveq2d φm00+nNm..^Nm+1XLn=0+0
211 00id 0+0=0
212 210 211 eqtr2di φm00=0+nNm..^Nm+1XLn
213 111 212 eqeq12d φm0n0..^Nm+1XLn=0n0..^NmXLn+nNm..^Nm+1XLn=0+nNm..^Nm+1XLn
214 78 213 imbitrrid φm0n0..^NmXLn=0n0..^Nm+1XLn=0
215 214 expcom m0φn0..^NmXLn=0n0..^Nm+1XLn=0
216 215 a2d m0φn0..^NmXLn=0φn0..^Nm+1XLn=0
217 54 59 64 69 77 216 nn0ind UN0φn0..^NUNXLn=0
218 217 impcom φUN0n0..^NUNXLn=0
219 30 218 syldan φU0n0..^NUNXLn=0
220 modval UN+UmodN=UNUN
221 22 25 220 syl2anc φU0UmodN=UNUN
222 221 oveq2d φU0NUN+UmodN=NUN+U-NUN
223 31 nn0cnd φU0NUN
224 nn0cn U0U
225 224 adantl φU0U
226 223 225 pncan3d φU0NUN+U-NUN=U
227 222 226 eqtr2d φU0U=NUN+UmodN
228 227 oveq2d φU0NUN..^U=NUN..^NUN+UmodN
229 228 sumeq1d φU0nNUN..^UXLn=nNUN..^NUN+UmodNXLn
230 nn0z U0U
231 zmodcl UNUmodN0
232 230 3 231 syl2anr φU0UmodN0
233 184 ralrimiva φm0k0nNm..^Nm+kXLn=n0..^kXLn
234 233 adantr φU0m0k0nNm..^Nm+kXLn=n0..^kXLn
235 oveq2 m=UNNm=NUN
236 235 oveq1d m=UNNm+k=NUN+k
237 235 236 oveq12d m=UNNm..^Nm+k=NUN..^NUN+k
238 237 sumeq1d m=UNnNm..^Nm+kXLn=nNUN..^NUN+kXLn
239 238 eqeq1d m=UNnNm..^Nm+kXLn=n0..^kXLnnNUN..^NUN+kXLn=n0..^kXLn
240 oveq2 k=UmodNNUN+k=NUN+UmodN
241 240 oveq2d k=UmodNNUN..^NUN+k=NUN..^NUN+UmodN
242 241 sumeq1d k=UmodNnNUN..^NUN+kXLn=nNUN..^NUN+UmodNXLn
243 oveq2 k=UmodN0..^k=0..^UmodN
244 243 sumeq1d k=UmodNn0..^kXLn=n0..^UmodNXLn
245 242 244 eqeq12d k=UmodNnNUN..^NUN+kXLn=n0..^kXLnnNUN..^NUN+UmodNXLn=n0..^UmodNXLn
246 239 245 rspc2va UN0UmodN0m0k0nNm..^Nm+kXLn=n0..^kXLnnNUN..^NUN+UmodNXLn=n0..^UmodNXLn
247 30 232 234 246 syl21anc φU0nNUN..^NUN+UmodNXLn=n0..^UmodNXLn
248 229 247 eqtrd φU0nNUN..^UXLn=n0..^UmodNXLn
249 219 248 oveq12d φU0n0..^NUNXLn+nNUN..^UXLn=0+n0..^UmodNXLn
250 fzofi 0..^UmodNFin
251 250 a1i φU00..^UmodNFin
252 7 ad2antrr φU0n0..^UmodNXD
253 elfzoelz n0..^UmodNn
254 253 adantl φU0n0..^UmodNn
255 4 1 5 2 252 254 dchrzrhcl φU0n0..^UmodNXLn
256 251 255 fsumcl φU0n0..^UmodNXLn
257 256 addlidd φU00+n0..^UmodNXLn=n0..^UmodNXLn
258 49 249 257 3eqtrd φU0n0..^UXLn=n0..^UmodNXLn
259 258 fveq2d φU0n0..^UXLn=n0..^UmodNXLn
260 oveq2 u=UmodN0..^u=0..^UmodN
261 260 sumeq1d u=UmodNn0..^uXLn=n0..^UmodNXLn
262 261 fveq2d u=UmodNn0..^uXLn=n0..^UmodNXLn
263 262 breq1d u=UmodNn0..^uXLnRn0..^UmodNXLnR
264 16 adantr φU0u0..^Nn0..^uXLnR
265 zmodfzo UNUmodN0..^N
266 230 3 265 syl2anr φU0UmodN0..^N
267 263 264 266 rspcdva φU0n0..^UmodNXLnR
268 259 267 eqbrtrd φU0n0..^UXLnR