| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrsum.g |
|
| 2 |
|
dchrsum.z |
|
| 3 |
|
dchrsum.d |
|
| 4 |
|
dchrsum.1 |
|
| 5 |
|
dchrsum.x |
|
| 6 |
|
dchrsum2.u |
|
| 7 |
|
eqeq2 |
|
| 8 |
|
eqeq2 |
|
| 9 |
|
fveq1 |
|
| 10 |
1 3
|
dchrrcl |
|
| 11 |
5 10
|
syl |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
1 2 4 6 12 13
|
dchr1 |
|
| 15 |
9 14
|
sylan9eqr |
|
| 16 |
15
|
an32s |
|
| 17 |
16
|
sumeq2dv |
|
| 18 |
2 6
|
znunithash |
|
| 19 |
11 18
|
syl |
|
| 20 |
11
|
phicld |
|
| 21 |
20
|
nnnn0d |
|
| 22 |
19 21
|
eqeltrd |
|
| 23 |
6
|
fvexi |
|
| 24 |
|
hashclb |
|
| 25 |
23 24
|
ax-mp |
|
| 26 |
22 25
|
sylibr |
|
| 27 |
|
ax-1cn |
|
| 28 |
|
fsumconst |
|
| 29 |
26 27 28
|
sylancl |
|
| 30 |
19
|
oveq1d |
|
| 31 |
20
|
nncnd |
|
| 32 |
31
|
mulridd |
|
| 33 |
29 30 32
|
3eqtrd |
|
| 34 |
33
|
adantr |
|
| 35 |
17 34
|
eqtrd |
|
| 36 |
1
|
dchrabl |
|
| 37 |
|
ablgrp |
|
| 38 |
3 4
|
grpidcl |
|
| 39 |
11 36 37 38
|
4syl |
|
| 40 |
1 2 3 6 5 39
|
dchreq |
|
| 41 |
40
|
notbid |
|
| 42 |
|
rexnal |
|
| 43 |
41 42
|
bitr4di |
|
| 44 |
|
df-ne |
|
| 45 |
11
|
adantr |
|
| 46 |
|
simpr |
|
| 47 |
1 2 4 6 45 46
|
dchr1 |
|
| 48 |
47
|
neeq2d |
|
| 49 |
26
|
adantr |
|
| 50 |
|
eqid |
|
| 51 |
1 2 3 50 5
|
dchrf |
|
| 52 |
50 6
|
unitss |
|
| 53 |
52
|
sseli |
|
| 54 |
|
ffvelcdm |
|
| 55 |
51 53 54
|
syl2an |
|
| 56 |
55
|
adantlr |
|
| 57 |
49 56
|
fsumcl |
|
| 58 |
|
0cnd |
|
| 59 |
51
|
adantr |
|
| 60 |
|
simprl |
|
| 61 |
52 60
|
sselid |
|
| 62 |
59 61
|
ffvelcdmd |
|
| 63 |
|
subcl |
|
| 64 |
62 27 63
|
sylancl |
|
| 65 |
|
simprr |
|
| 66 |
|
subeq0 |
|
| 67 |
62 27 66
|
sylancl |
|
| 68 |
67
|
necon3bid |
|
| 69 |
65 68
|
mpbird |
|
| 70 |
|
oveq2 |
|
| 71 |
70
|
fveq2d |
|
| 72 |
71
|
cbvsumv |
|
| 73 |
1 2 3
|
dchrmhm |
|
| 74 |
73 5
|
sselid |
|
| 75 |
74
|
ad2antrr |
|
| 76 |
61
|
adantr |
|
| 77 |
53
|
adantl |
|
| 78 |
|
eqid |
|
| 79 |
78 50
|
mgpbas |
|
| 80 |
|
eqid |
|
| 81 |
78 80
|
mgpplusg |
|
| 82 |
|
eqid |
|
| 83 |
|
cnfldmul |
|
| 84 |
82 83
|
mgpplusg |
|
| 85 |
79 81 84
|
mhmlin |
|
| 86 |
75 76 77 85
|
syl3anc |
|
| 87 |
86
|
sumeq2dv |
|
| 88 |
72 87
|
eqtrid |
|
| 89 |
|
fveq2 |
|
| 90 |
11
|
nnnn0d |
|
| 91 |
2
|
zncrng |
|
| 92 |
|
crngring |
|
| 93 |
|
eqid |
|
| 94 |
6 93
|
unitgrp |
|
| 95 |
90 91 92 94
|
4syl |
|
| 96 |
|
eqid |
|
| 97 |
6 93
|
unitgrpbas |
|
| 98 |
93 81
|
ressplusg |
|
| 99 |
23 98
|
ax-mp |
|
| 100 |
96 97 99
|
grplactf1o |
|
| 101 |
95 60 100
|
syl2an2r |
|
| 102 |
96 97
|
grplactval |
|
| 103 |
60 102
|
sylan |
|
| 104 |
89 49 101 103 56
|
fsumf1o |
|
| 105 |
49 62 56
|
fsummulc2 |
|
| 106 |
88 104 105
|
3eqtr4rd |
|
| 107 |
57
|
mullidd |
|
| 108 |
106 107
|
oveq12d |
|
| 109 |
57
|
subidd |
|
| 110 |
108 109
|
eqtrd |
|
| 111 |
|
1cnd |
|
| 112 |
62 111 57
|
subdird |
|
| 113 |
64
|
mul01d |
|
| 114 |
110 112 113
|
3eqtr4d |
|
| 115 |
57 58 64 69 114
|
mulcanad |
|
| 116 |
115
|
expr |
|
| 117 |
48 116
|
sylbid |
|
| 118 |
44 117
|
biimtrrid |
|
| 119 |
118
|
rexlimdva |
|
| 120 |
43 119
|
sylbid |
|
| 121 |
120
|
imp |
|
| 122 |
7 8 35 121
|
ifbothda |
|