Metamath Proof Explorer


Theorem dchrsum2

Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character X is 0 if X is non-principal and phi ( n ) otherwise. Part of Theorem 6.5.1 of Shapiro p. 230. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrsum.g G=DChrN
dchrsum.z Z=/N
dchrsum.d D=BaseG
dchrsum.1 1˙=0G
dchrsum.x φXD
dchrsum2.u U=UnitZ
Assertion dchrsum2 φaUXa=ifX=1˙ϕN0

Proof

Step Hyp Ref Expression
1 dchrsum.g G=DChrN
2 dchrsum.z Z=/N
3 dchrsum.d D=BaseG
4 dchrsum.1 1˙=0G
5 dchrsum.x φXD
6 dchrsum2.u U=UnitZ
7 eqeq2 ϕN=ifX=1˙ϕN0aUXa=ϕNaUXa=ifX=1˙ϕN0
8 eqeq2 0=ifX=1˙ϕN0aUXa=0aUXa=ifX=1˙ϕN0
9 fveq1 X=1˙Xa=1˙a
10 1 3 dchrrcl XDN
11 5 10 syl φN
12 11 adantr φaUN
13 simpr φaUaU
14 1 2 4 6 12 13 dchr1 φaU1˙a=1
15 9 14 sylan9eqr φaUX=1˙Xa=1
16 15 an32s φX=1˙aUXa=1
17 16 sumeq2dv φX=1˙aUXa=aU1
18 2 6 znunithash NU=ϕN
19 11 18 syl φU=ϕN
20 11 phicld φϕN
21 20 nnnn0d φϕN0
22 19 21 eqeltrd φU0
23 6 fvexi UV
24 hashclb UVUFinU0
25 23 24 ax-mp UFinU0
26 22 25 sylibr φUFin
27 ax-1cn 1
28 fsumconst UFin1aU1=U1
29 26 27 28 sylancl φaU1=U1
30 19 oveq1d φU1=ϕN1
31 20 nncnd φϕN
32 31 mulridd φϕN1=ϕN
33 29 30 32 3eqtrd φaU1=ϕN
34 33 adantr φX=1˙aU1=ϕN
35 17 34 eqtrd φX=1˙aUXa=ϕN
36 1 dchrabl NGAbel
37 ablgrp GAbelGGrp
38 3 4 grpidcl GGrp1˙D
39 11 36 37 38 4syl φ1˙D
40 1 2 3 6 5 39 dchreq φX=1˙kUXk=1˙k
41 40 notbid φ¬X=1˙¬kUXk=1˙k
42 rexnal kU¬Xk=1˙k¬kUXk=1˙k
43 41 42 bitr4di φ¬X=1˙kU¬Xk=1˙k
44 df-ne Xk1˙k¬Xk=1˙k
45 11 adantr φkUN
46 simpr φkUkU
47 1 2 4 6 45 46 dchr1 φkU1˙k=1
48 47 neeq2d φkUXk1˙kXk1
49 26 adantr φkUXk1UFin
50 eqid BaseZ=BaseZ
51 1 2 3 50 5 dchrf φX:BaseZ
52 50 6 unitss UBaseZ
53 52 sseli aUaBaseZ
54 ffvelcdm X:BaseZaBaseZXa
55 51 53 54 syl2an φaUXa
56 55 adantlr φkUXk1aUXa
57 49 56 fsumcl φkUXk1aUXa
58 0cnd φkUXk10
59 51 adantr φkUXk1X:BaseZ
60 simprl φkUXk1kU
61 52 60 sselid φkUXk1kBaseZ
62 59 61 ffvelcdmd φkUXk1Xk
63 subcl Xk1Xk1
64 62 27 63 sylancl φkUXk1Xk1
65 simprr φkUXk1Xk1
66 subeq0 Xk1Xk1=0Xk=1
67 62 27 66 sylancl φkUXk1Xk1=0Xk=1
68 67 necon3bid φkUXk1Xk10Xk1
69 65 68 mpbird φkUXk1Xk10
70 oveq2 x=akZx=kZa
71 70 fveq2d x=aXkZx=XkZa
72 71 cbvsumv xUXkZx=aUXkZa
73 1 2 3 dchrmhm DmulGrpZMndHommulGrpfld
74 73 5 sselid φXmulGrpZMndHommulGrpfld
75 74 ad2antrr φkUXk1aUXmulGrpZMndHommulGrpfld
76 61 adantr φkUXk1aUkBaseZ
77 53 adantl φkUXk1aUaBaseZ
78 eqid mulGrpZ=mulGrpZ
79 78 50 mgpbas BaseZ=BasemulGrpZ
80 eqid Z=Z
81 78 80 mgpplusg Z=+mulGrpZ
82 eqid mulGrpfld=mulGrpfld
83 cnfldmul ×=fld
84 82 83 mgpplusg ×=+mulGrpfld
85 79 81 84 mhmlin XmulGrpZMndHommulGrpfldkBaseZaBaseZXkZa=XkXa
86 75 76 77 85 syl3anc φkUXk1aUXkZa=XkXa
87 86 sumeq2dv φkUXk1aUXkZa=aUXkXa
88 72 87 eqtrid φkUXk1xUXkZx=aUXkXa
89 fveq2 a=kZxXa=XkZx
90 11 nnnn0d φN0
91 2 zncrng N0ZCRing
92 crngring ZCRingZRing
93 eqid mulGrpZ𝑠U=mulGrpZ𝑠U
94 6 93 unitgrp ZRingmulGrpZ𝑠UGrp
95 90 91 92 94 4syl φmulGrpZ𝑠UGrp
96 eqid bUcUbZc=bUcUbZc
97 6 93 unitgrpbas U=BasemulGrpZ𝑠U
98 93 81 ressplusg UVZ=+mulGrpZ𝑠U
99 23 98 ax-mp Z=+mulGrpZ𝑠U
100 96 97 99 grplactf1o mulGrpZ𝑠UGrpkUbUcUbZck:U1-1 ontoU
101 95 60 100 syl2an2r φkUXk1bUcUbZck:U1-1 ontoU
102 96 97 grplactval kUxUbUcUbZckx=kZx
103 60 102 sylan φkUXk1xUbUcUbZckx=kZx
104 89 49 101 103 56 fsumf1o φkUXk1aUXa=xUXkZx
105 49 62 56 fsummulc2 φkUXk1XkaUXa=aUXkXa
106 88 104 105 3eqtr4rd φkUXk1XkaUXa=aUXa
107 57 mullidd φkUXk11aUXa=aUXa
108 106 107 oveq12d φkUXk1XkaUXa1aUXa=aUXaaUXa
109 57 subidd φkUXk1aUXaaUXa=0
110 108 109 eqtrd φkUXk1XkaUXa1aUXa=0
111 1cnd φkUXk11
112 62 111 57 subdird φkUXk1Xk1aUXa=XkaUXa1aUXa
113 64 mul01d φkUXk1Xk10=0
114 110 112 113 3eqtr4d φkUXk1Xk1aUXa=Xk10
115 57 58 64 69 114 mulcanad φkUXk1aUXa=0
116 115 expr φkUXk1aUXa=0
117 48 116 sylbid φkUXk1˙kaUXa=0
118 44 117 biimtrrid φkU¬Xk=1˙kaUXa=0
119 118 rexlimdva φkU¬Xk=1˙kaUXa=0
120 43 119 sylbid φ¬X=1˙aUXa=0
121 120 imp φ¬X=1˙aUXa=0
122 7 8 35 121 ifbothda φaUXa=ifX=1˙ϕN0