Metamath Proof Explorer


Theorem dffi3

Description: The set of finite intersections can be "constructed" inductively by iterating binary intersection _om -many times. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis dffi3.1 R = u V ran y u , z u y z
Assertion dffi3 A V fi A = rec R A ω

Proof

Step Hyp Ref Expression
1 dffi3.1 R = u V ran y u , z u y z
2 dffi2 A V fi A = x | A x c x d x c d x
3 fr0g A V rec R A ω = A
4 frfnom rec R A ω Fn ω
5 peano1 ω
6 fnfvelrn rec R A ω Fn ω ω rec R A ω ran rec R A ω
7 4 5 6 mp2an rec R A ω ran rec R A ω
8 3 7 eqeltrrdi A V A ran rec R A ω
9 elssuni A ran rec R A ω A ran rec R A ω
10 8 9 syl A V A ran rec R A ω
11 reeanv m ω n ω c rec R A ω m d rec R A ω n m ω c rec R A ω m n ω d rec R A ω n
12 eliun c m ω rec R A ω m m ω c rec R A ω m
13 eliun d n ω rec R A ω n n ω d rec R A ω n
14 12 13 anbi12i c m ω rec R A ω m d n ω rec R A ω n m ω c rec R A ω m n ω d rec R A ω n
15 fniunfv rec R A ω Fn ω m ω rec R A ω m = ran rec R A ω
16 15 eleq2d rec R A ω Fn ω c m ω rec R A ω m c ran rec R A ω
17 fniunfv rec R A ω Fn ω n ω rec R A ω n = ran rec R A ω
18 17 eleq2d rec R A ω Fn ω d n ω rec R A ω n d ran rec R A ω
19 16 18 anbi12d rec R A ω Fn ω c m ω rec R A ω m d n ω rec R A ω n c ran rec R A ω d ran rec R A ω
20 4 19 ax-mp c m ω rec R A ω m d n ω rec R A ω n c ran rec R A ω d ran rec R A ω
21 11 14 20 3bitr2i m ω n ω c rec R A ω m d rec R A ω n c ran rec R A ω d ran rec R A ω
22 ordom Ord ω
23 ordunel Ord ω m ω n ω m n ω
24 22 23 mp3an1 m ω n ω m n ω
25 24 adantl A V m ω n ω m n ω
26 simprl A V m ω n ω m ω
27 25 26 jca A V m ω n ω m n ω m ω
28 nnon y ω y On
29 nnon x ω x On
30 29 ad2antlr A V x ω y ω x On
31 onsseleq y On x On y x y x y = x
32 28 30 31 syl2an2 A V x ω y ω y x y x y = x
33 rzal x = y x rec R A ω y rec R A ω x
34 33 biantrud x = rec R A ω x fi A rec R A ω x fi A y x rec R A ω y rec R A ω x
35 fveq2 x = rec R A ω x = rec R A ω
36 35 sseq1d x = rec R A ω x fi A rec R A ω fi A
37 34 36 bitr3d x = rec R A ω x fi A y x rec R A ω y rec R A ω x rec R A ω fi A
38 fveq2 x = n rec R A ω x = rec R A ω n
39 38 sseq1d x = n rec R A ω x fi A rec R A ω n fi A
40 38 sseq2d x = n rec R A ω y rec R A ω x rec R A ω y rec R A ω n
41 40 raleqbi1dv x = n y x rec R A ω y rec R A ω x y n rec R A ω y rec R A ω n
42 39 41 anbi12d x = n rec R A ω x fi A y x rec R A ω y rec R A ω x rec R A ω n fi A y n rec R A ω y rec R A ω n
43 fveq2 x = suc n rec R A ω x = rec R A ω suc n
44 43 sseq1d x = suc n rec R A ω x fi A rec R A ω suc n fi A
45 43 sseq2d x = suc n rec R A ω y rec R A ω x rec R A ω y rec R A ω suc n
46 45 raleqbi1dv x = suc n y x rec R A ω y rec R A ω x y suc n rec R A ω y rec R A ω suc n
47 44 46 anbi12d x = suc n rec R A ω x fi A y x rec R A ω y rec R A ω x rec R A ω suc n fi A y suc n rec R A ω y rec R A ω suc n
48 ssfii A V A fi A
49 3 48 eqsstrd A V rec R A ω fi A
50 id x rec R A ω n x rec R A ω n
51 eqidd x rec R A ω n x = x
52 ineq1 a = x a b = x b
53 52 eqeq2d a = x x = a b x = x b
54 ineq2 b = x x b = x x
55 inidm x x = x
56 54 55 eqtrdi b = x x b = x
57 56 eqeq2d b = x x = x b x = x
58 53 57 rspc2ev x rec R A ω n x rec R A ω n x = x a rec R A ω n b rec R A ω n x = a b
59 50 50 51 58 syl3anc x rec R A ω n a rec R A ω n b rec R A ω n x = a b
60 eqid a rec R A ω n , b rec R A ω n a b = a rec R A ω n , b rec R A ω n a b
61 60 rnmpo ran a rec R A ω n , b rec R A ω n a b = x | a rec R A ω n b rec R A ω n x = a b
62 61 abeq2i x ran a rec R A ω n , b rec R A ω n a b a rec R A ω n b rec R A ω n x = a b
63 59 62 sylibr x rec R A ω n x ran a rec R A ω n , b rec R A ω n a b
64 63 ssriv rec R A ω n ran a rec R A ω n , b rec R A ω n a b
65 simpl n ω rec R A ω n fi A n ω
66 fvex rec R A ω n V
67 66 uniex rec R A ω n V
68 67 pwex 𝒫 rec R A ω n V
69 inss1 a b a
70 elssuni a rec R A ω n a rec R A ω n
71 70 adantr a rec R A ω n b rec R A ω n a rec R A ω n
72 69 71 sstrid a rec R A ω n b rec R A ω n a b rec R A ω n
73 vex a V
74 73 inex1 a b V
75 74 elpw a b 𝒫 rec R A ω n a b rec R A ω n
76 72 75 sylibr a rec R A ω n b rec R A ω n a b 𝒫 rec R A ω n
77 76 rgen2 a rec R A ω n b rec R A ω n a b 𝒫 rec R A ω n
78 60 fmpo a rec R A ω n b rec R A ω n a b 𝒫 rec R A ω n a rec R A ω n , b rec R A ω n a b : rec R A ω n × rec R A ω n 𝒫 rec R A ω n
79 77 78 mpbi a rec R A ω n , b rec R A ω n a b : rec R A ω n × rec R A ω n 𝒫 rec R A ω n
80 frn a rec R A ω n , b rec R A ω n a b : rec R A ω n × rec R A ω n 𝒫 rec R A ω n ran a rec R A ω n , b rec R A ω n a b 𝒫 rec R A ω n
81 79 80 ax-mp ran a rec R A ω n , b rec R A ω n a b 𝒫 rec R A ω n
82 68 81 ssexi ran a rec R A ω n , b rec R A ω n a b V
83 nfcv _ v A
84 nfcv _ v n
85 nfcv _ v ran a rec R A ω n , b rec R A ω n a b
86 mpoeq12 u = v u = v y u , z u y z = y v , z v y z
87 86 anidms u = v y u , z u y z = y v , z v y z
88 ineq1 y = a y z = a z
89 ineq2 z = b a z = a b
90 88 89 cbvmpov y v , z v y z = a v , b v a b
91 87 90 eqtrdi u = v y u , z u y z = a v , b v a b
92 91 rneqd u = v ran y u , z u y z = ran a v , b v a b
93 92 cbvmptv u V ran y u , z u y z = v V ran a v , b v a b
94 1 93 eqtri R = v V ran a v , b v a b
95 rdgeq1 R = v V ran a v , b v a b rec R A = rec v V ran a v , b v a b A
96 94 95 ax-mp rec R A = rec v V ran a v , b v a b A
97 96 reseq1i rec R A ω = rec v V ran a v , b v a b A ω
98 mpoeq12 v = rec R A ω n v = rec R A ω n a v , b v a b = a rec R A ω n , b rec R A ω n a b
99 98 anidms v = rec R A ω n a v , b v a b = a rec R A ω n , b rec R A ω n a b
100 99 rneqd v = rec R A ω n ran a v , b v a b = ran a rec R A ω n , b rec R A ω n a b
101 83 84 85 97 100 frsucmpt n ω ran a rec R A ω n , b rec R A ω n a b V rec R A ω suc n = ran a rec R A ω n , b rec R A ω n a b
102 65 82 101 sylancl n ω rec R A ω n fi A rec R A ω suc n = ran a rec R A ω n , b rec R A ω n a b
103 64 102 sseqtrrid n ω rec R A ω n fi A rec R A ω n rec R A ω suc n
104 sstr2 rec R A ω y rec R A ω n rec R A ω n rec R A ω suc n rec R A ω y rec R A ω suc n
105 103 104 syl5com n ω rec R A ω n fi A rec R A ω y rec R A ω n rec R A ω y rec R A ω suc n
106 105 ralimdv n ω rec R A ω n fi A y n rec R A ω y rec R A ω n y n rec R A ω y rec R A ω suc n
107 vex n V
108 fveq2 y = n rec R A ω y = rec R A ω n
109 108 sseq1d y = n rec R A ω y rec R A ω suc n rec R A ω n rec R A ω suc n
110 107 109 ralsn y n rec R A ω y rec R A ω suc n rec R A ω n rec R A ω suc n
111 103 110 sylibr n ω rec R A ω n fi A y n rec R A ω y rec R A ω suc n
112 106 111 jctird n ω rec R A ω n fi A y n rec R A ω y rec R A ω n y n rec R A ω y rec R A ω suc n y n rec R A ω y rec R A ω suc n
113 df-suc suc n = n n
114 113 raleqi y suc n rec R A ω y rec R A ω suc n y n n rec R A ω y rec R A ω suc n
115 ralunb y n n rec R A ω y rec R A ω suc n y n rec R A ω y rec R A ω suc n y n rec R A ω y rec R A ω suc n
116 114 115 bitri y suc n rec R A ω y rec R A ω suc n y n rec R A ω y rec R A ω suc n y n rec R A ω y rec R A ω suc n
117 112 116 syl6ibr n ω rec R A ω n fi A y n rec R A ω y rec R A ω n y suc n rec R A ω y rec R A ω suc n
118 fiin a fi A b fi A a b fi A
119 118 rgen2 a fi A b fi A a b fi A
120 ss2ralv rec R A ω n fi A a fi A b fi A a b fi A a rec R A ω n b rec R A ω n a b fi A
121 119 120 mpi rec R A ω n fi A a rec R A ω n b rec R A ω n a b fi A
122 60 fmpo a rec R A ω n b rec R A ω n a b fi A a rec R A ω n , b rec R A ω n a b : rec R A ω n × rec R A ω n fi A
123 121 122 sylib rec R A ω n fi A a rec R A ω n , b rec R A ω n a b : rec R A ω n × rec R A ω n fi A
124 123 frnd rec R A ω n fi A ran a rec R A ω n , b rec R A ω n a b fi A
125 124 adantl n ω rec R A ω n fi A ran a rec R A ω n , b rec R A ω n a b fi A
126 102 125 eqsstrd n ω rec R A ω n fi A rec R A ω suc n fi A
127 117 126 jctild n ω rec R A ω n fi A y n rec R A ω y rec R A ω n rec R A ω suc n fi A y suc n rec R A ω y rec R A ω suc n
128 127 expimpd n ω rec R A ω n fi A y n rec R A ω y rec R A ω n rec R A ω suc n fi A y suc n rec R A ω y rec R A ω suc n
129 128 a1d n ω A V rec R A ω n fi A y n rec R A ω y rec R A ω n rec R A ω suc n fi A y suc n rec R A ω y rec R A ω suc n
130 37 42 47 49 129 finds2 x ω A V rec R A ω x fi A y x rec R A ω y rec R A ω x
131 130 impcom A V x ω rec R A ω x fi A y x rec R A ω y rec R A ω x
132 131 simprd A V x ω y x rec R A ω y rec R A ω x
133 132 r19.21bi A V x ω y x rec R A ω y rec R A ω x
134 133 ex A V x ω y x rec R A ω y rec R A ω x
135 134 adantr A V x ω y ω y x rec R A ω y rec R A ω x
136 fveq2 y = x rec R A ω y = rec R A ω x
137 eqimss rec R A ω y = rec R A ω x rec R A ω y rec R A ω x
138 136 137 syl y = x rec R A ω y rec R A ω x
139 138 a1i A V x ω y ω y = x rec R A ω y rec R A ω x
140 135 139 jaod A V x ω y ω y x y = x rec R A ω y rec R A ω x
141 32 140 sylbid A V x ω y ω y x rec R A ω y rec R A ω x
142 141 ralrimiva A V x ω y ω y x rec R A ω y rec R A ω x
143 142 ralrimiva A V x ω y ω y x rec R A ω y rec R A ω x
144 143 adantr A V m ω n ω x ω y ω y x rec R A ω y rec R A ω x
145 ssun1 m m n
146 145 a1i A V m ω n ω m m n
147 sseq2 x = m n y x y m n
148 fveq2 x = m n rec R A ω x = rec R A ω m n
149 148 sseq2d x = m n rec R A ω y rec R A ω x rec R A ω y rec R A ω m n
150 147 149 imbi12d x = m n y x rec R A ω y rec R A ω x y m n rec R A ω y rec R A ω m n
151 sseq1 y = m y m n m m n
152 fveq2 y = m rec R A ω y = rec R A ω m
153 152 sseq1d y = m rec R A ω y rec R A ω m n rec R A ω m rec R A ω m n
154 151 153 imbi12d y = m y m n rec R A ω y rec R A ω m n m m n rec R A ω m rec R A ω m n
155 150 154 rspc2v m n ω m ω x ω y ω y x rec R A ω y rec R A ω x m m n rec R A ω m rec R A ω m n
156 27 144 146 155 syl3c A V m ω n ω rec R A ω m rec R A ω m n
157 156 sseld A V m ω n ω c rec R A ω m c rec R A ω m n
158 simprr A V m ω n ω n ω
159 25 158 jca A V m ω n ω m n ω n ω
160 ssun2 n m n
161 160 a1i A V m ω n ω n m n
162 sseq1 y = n y m n n m n
163 108 sseq1d y = n rec R A ω y rec R A ω m n rec R A ω n rec R A ω m n
164 162 163 imbi12d y = n y m n rec R A ω y rec R A ω m n n m n rec R A ω n rec R A ω m n
165 150 164 rspc2v m n ω n ω x ω y ω y x rec R A ω y rec R A ω x n m n rec R A ω n rec R A ω m n
166 159 144 161 165 syl3c A V m ω n ω rec R A ω n rec R A ω m n
167 166 sseld A V m ω n ω d rec R A ω n d rec R A ω m n
168 24 ad2antlr A V m ω n ω c rec R A ω m n d rec R A ω m n m n ω
169 peano2 m n ω suc m n ω
170 fveq2 x = suc m n rec R A ω x = rec R A ω suc m n
171 170 ssiun2s suc m n ω rec R A ω suc m n x ω rec R A ω x
172 168 169 171 3syl A V m ω n ω c rec R A ω m n d rec R A ω m n rec R A ω suc m n x ω rec R A ω x
173 simprl A V m ω n ω c rec R A ω m n d rec R A ω m n c rec R A ω m n
174 simprr A V m ω n ω c rec R A ω m n d rec R A ω m n d rec R A ω m n
175 eqidd A V m ω n ω c rec R A ω m n d rec R A ω m n c d = c d
176 ineq1 a = c a b = c b
177 176 eqeq2d a = c c d = a b c d = c b
178 ineq2 b = d c b = c d
179 178 eqeq2d b = d c d = c b c d = c d
180 177 179 rspc2ev c rec R A ω m n d rec R A ω m n c d = c d a rec R A ω m n b rec R A ω m n c d = a b
181 173 174 175 180 syl3anc A V m ω n ω c rec R A ω m n d rec R A ω m n a rec R A ω m n b rec R A ω m n c d = a b
182 vex c V
183 182 inex1 c d V
184 eqeq1 x = c d x = a b c d = a b
185 184 2rexbidv x = c d a rec R A ω m n b rec R A ω m n x = a b a rec R A ω m n b rec R A ω m n c d = a b
186 183 185 elab c d x | a rec R A ω m n b rec R A ω m n x = a b a rec R A ω m n b rec R A ω m n c d = a b
187 181 186 sylibr A V m ω n ω c rec R A ω m n d rec R A ω m n c d x | a rec R A ω m n b rec R A ω m n x = a b
188 eqid a rec R A ω m n , b rec R A ω m n a b = a rec R A ω m n , b rec R A ω m n a b
189 188 rnmpo ran a rec R A ω m n , b rec R A ω m n a b = x | a rec R A ω m n b rec R A ω m n x = a b
190 187 189 eleqtrrdi A V m ω n ω c rec R A ω m n d rec R A ω m n c d ran a rec R A ω m n , b rec R A ω m n a b
191 fvex rec R A ω m n V
192 191 uniex rec R A ω m n V
193 192 pwex 𝒫 rec R A ω m n V
194 elssuni a rec R A ω m n a rec R A ω m n
195 69 194 sstrid a rec R A ω m n a b rec R A ω m n
196 74 elpw a b 𝒫 rec R A ω m n a b rec R A ω m n
197 195 196 sylibr a rec R A ω m n a b 𝒫 rec R A ω m n
198 197 adantr a rec R A ω m n b rec R A ω m n a b 𝒫 rec R A ω m n
199 198 rgen2 a rec R A ω m n b rec R A ω m n a b 𝒫 rec R A ω m n
200 188 fmpo a rec R A ω m n b rec R A ω m n a b 𝒫 rec R A ω m n a rec R A ω m n , b rec R A ω m n a b : rec R A ω m n × rec R A ω m n 𝒫 rec R A ω m n
201 199 200 mpbi a rec R A ω m n , b rec R A ω m n a b : rec R A ω m n × rec R A ω m n 𝒫 rec R A ω m n
202 frn a rec R A ω m n , b rec R A ω m n a b : rec R A ω m n × rec R A ω m n 𝒫 rec R A ω m n ran a rec R A ω m n , b rec R A ω m n a b 𝒫 rec R A ω m n
203 201 202 ax-mp ran a rec R A ω m n , b rec R A ω m n a b 𝒫 rec R A ω m n
204 193 203 ssexi ran a rec R A ω m n , b rec R A ω m n a b V
205 nfcv _ v m n
206 nfcv _ v ran a rec R A ω m n , b rec R A ω m n a b
207 mpoeq12 v = rec R A ω m n v = rec R A ω m n a v , b v a b = a rec R A ω m n , b rec R A ω m n a b
208 207 anidms v = rec R A ω m n a v , b v a b = a rec R A ω m n , b rec R A ω m n a b
209 208 rneqd v = rec R A ω m n ran a v , b v a b = ran a rec R A ω m n , b rec R A ω m n a b
210 83 205 206 97 209 frsucmpt m n ω ran a rec R A ω m n , b rec R A ω m n a b V rec R A ω suc m n = ran a rec R A ω m n , b rec R A ω m n a b
211 168 204 210 sylancl A V m ω n ω c rec R A ω m n d rec R A ω m n rec R A ω suc m n = ran a rec R A ω m n , b rec R A ω m n a b
212 190 211 eleqtrrd A V m ω n ω c rec R A ω m n d rec R A ω m n c d rec R A ω suc m n
213 172 212 sseldd A V m ω n ω c rec R A ω m n d rec R A ω m n c d x ω rec R A ω x
214 fniunfv rec R A ω Fn ω x ω rec R A ω x = ran rec R A ω
215 4 214 ax-mp x ω rec R A ω x = ran rec R A ω
216 213 215 eleqtrdi A V m ω n ω c rec R A ω m n d rec R A ω m n c d ran rec R A ω
217 216 ex A V m ω n ω c rec R A ω m n d rec R A ω m n c d ran rec R A ω
218 157 167 217 syl2and A V m ω n ω c rec R A ω m d rec R A ω n c d ran rec R A ω
219 218 rexlimdvva A V m ω n ω c rec R A ω m d rec R A ω n c d ran rec R A ω
220 219 imp A V m ω n ω c rec R A ω m d rec R A ω n c d ran rec R A ω
221 21 220 sylan2br A V c ran rec R A ω d ran rec R A ω c d ran rec R A ω
222 221 ralrimivva A V c ran rec R A ω d ran rec R A ω c d ran rec R A ω
223 131 simpld A V x ω rec R A ω x fi A
224 fvex fi A V
225 224 elpw2 rec R A ω x 𝒫 fi A rec R A ω x fi A
226 223 225 sylibr A V x ω rec R A ω x 𝒫 fi A
227 226 ralrimiva A V x ω rec R A ω x 𝒫 fi A
228 fnfvrnss rec R A ω Fn ω x ω rec R A ω x 𝒫 fi A ran rec R A ω 𝒫 fi A
229 4 227 228 sylancr A V ran rec R A ω 𝒫 fi A
230 sspwuni ran rec R A ω 𝒫 fi A ran rec R A ω fi A
231 229 230 sylib A V ran rec R A ω fi A
232 ssexg ran rec R A ω fi A fi A V ran rec R A ω V
233 231 224 232 sylancl A V ran rec R A ω V
234 sseq2 x = ran rec R A ω A x A ran rec R A ω
235 eleq2 x = ran rec R A ω c d x c d ran rec R A ω
236 235 raleqbi1dv x = ran rec R A ω d x c d x d ran rec R A ω c d ran rec R A ω
237 236 raleqbi1dv x = ran rec R A ω c x d x c d x c ran rec R A ω d ran rec R A ω c d ran rec R A ω
238 234 237 anbi12d x = ran rec R A ω A x c x d x c d x A ran rec R A ω c ran rec R A ω d ran rec R A ω c d ran rec R A ω
239 238 elabg ran rec R A ω V ran rec R A ω x | A x c x d x c d x A ran rec R A ω c ran rec R A ω d ran rec R A ω c d ran rec R A ω
240 233 239 syl A V ran rec R A ω x | A x c x d x c d x A ran rec R A ω c ran rec R A ω d ran rec R A ω c d ran rec R A ω
241 10 222 240 mpbir2and A V ran rec R A ω x | A x c x d x c d x
242 intss1 ran rec R A ω x | A x c x d x c d x x | A x c x d x c d x ran rec R A ω
243 241 242 syl A V x | A x c x d x c d x ran rec R A ω
244 2 243 eqsstrd A V fi A ran rec R A ω
245 244 231 eqssd A V fi A = ran rec R A ω
246 df-ima rec R A ω = ran rec R A ω
247 246 unieqi rec R A ω = ran rec R A ω
248 245 247 eqtr4di A V fi A = rec R A ω