Metamath Proof Explorer


Theorem dprdfeq0

Description: The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses eldprdi.0 0˙=0G
eldprdi.w W=hiISi|finSupp0˙h
eldprdi.1 φGdomDProdS
eldprdi.2 φdomS=I
eldprdi.3 φFW
Assertion dprdfeq0 φGF=0˙F=xI0˙

Proof

Step Hyp Ref Expression
1 eldprdi.0 0˙=0G
2 eldprdi.w W=hiISi|finSupp0˙h
3 eldprdi.1 φGdomDProdS
4 eldprdi.2 φdomS=I
5 eldprdi.3 φFW
6 eqid BaseG=BaseG
7 2 3 4 5 6 dprdff φF:IBaseG
8 7 feqmptd φF=xIFx
9 8 adantr φGF=0˙F=xIFx
10 2 3 4 5 dprdfcl φxIFxSx
11 10 adantlr φGF=0˙xIFxSx
12 3 ad2antrr φGF=0˙xIGdomDProdS
13 4 ad2antrr φGF=0˙xIdomS=I
14 simpr φGF=0˙xIxI
15 eqid yIify=xFx0˙=yIify=xFx0˙
16 1 2 12 13 14 11 15 dprdfid φGF=0˙xIyIify=xFx0˙WGyIify=xFx0˙=Fx
17 16 simpld φGF=0˙xIyIify=xFx0˙W
18 5 ad2antrr φGF=0˙xIFW
19 eqid -G=-G
20 1 2 12 13 17 18 19 dprdfsub φGF=0˙xIyIify=xFx0˙-GfFWGyIify=xFx0˙-GfF=GyIify=xFx0˙-GGF
21 20 simprd φGF=0˙xIGyIify=xFx0˙-GfF=GyIify=xFx0˙-GGF
22 3 4 dprddomcld φIV
23 22 ad2antrr φGF=0˙xIIV
24 fvex FxV
25 1 fvexi 0˙V
26 24 25 ifex ify=xFx0˙V
27 26 a1i φGF=0˙xIyIify=xFx0˙V
28 fvexd φGF=0˙xIyIFyV
29 eqidd φGF=0˙xIyIify=xFx0˙=yIify=xFx0˙
30 7 ad2antrr φGF=0˙xIF:IBaseG
31 30 feqmptd φGF=0˙xIF=yIFy
32 23 27 28 29 31 offval2 φGF=0˙xIyIify=xFx0˙-GfF=yIify=xFx0˙-GFy
33 32 oveq2d φGF=0˙xIGyIify=xFx0˙-GfF=GyIify=xFx0˙-GFy
34 16 simprd φGF=0˙xIGyIify=xFx0˙=Fx
35 simplr φGF=0˙xIGF=0˙
36 34 35 oveq12d φGF=0˙xIGyIify=xFx0˙-GGF=Fx-G0˙
37 dprdgrp GdomDProdSGGrp
38 12 37 syl φGF=0˙xIGGrp
39 30 14 ffvelcdmd φGF=0˙xIFxBaseG
40 6 1 19 grpsubid1 GGrpFxBaseGFx-G0˙=Fx
41 38 39 40 syl2anc φGF=0˙xIFx-G0˙=Fx
42 36 41 eqtrd φGF=0˙xIGyIify=xFx0˙-GGF=Fx
43 21 33 42 3eqtr3d φGF=0˙xIGyIify=xFx0˙-GFy=Fx
44 eqid CntzG=CntzG
45 grpmnd GGrpGMnd
46 3 37 45 3syl φGMnd
47 46 ad2antrr φGF=0˙xIGMnd
48 6 subgacs GGrpSubGrpGACSBaseG
49 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
50 38 48 49 3syl φGF=0˙xISubGrpGMooreBaseG
51 imassrn SIxranS
52 3 4 dprdf2 φS:ISubGrpG
53 52 ad2antrr φGF=0˙xIS:ISubGrpG
54 53 frnd φGF=0˙xIranSSubGrpG
55 mresspw SubGrpGMooreBaseGSubGrpG𝒫BaseG
56 50 55 syl φGF=0˙xISubGrpG𝒫BaseG
57 54 56 sstrd φGF=0˙xIranS𝒫BaseG
58 51 57 sstrid φGF=0˙xISIx𝒫BaseG
59 sspwuni SIx𝒫BaseGSIxBaseG
60 58 59 sylib φGF=0˙xISIxBaseG
61 eqid mrClsSubGrpG=mrClsSubGrpG
62 61 mrccl SubGrpGMooreBaseGSIxBaseGmrClsSubGrpGSIxSubGrpG
63 50 60 62 syl2anc φGF=0˙xImrClsSubGrpGSIxSubGrpG
64 subgsubm mrClsSubGrpGSIxSubGrpGmrClsSubGrpGSIxSubMndG
65 63 64 syl φGF=0˙xImrClsSubGrpGSIxSubMndG
66 oveq1 Fx=ify=xFx0˙Fx-GFy=ify=xFx0˙-GFy
67 66 eleq1d Fx=ify=xFx0˙Fx-GFymrClsSubGrpGSIxify=xFx0˙-GFymrClsSubGrpGSIx
68 oveq1 0˙=ify=xFx0˙0˙-GFy=ify=xFx0˙-GFy
69 68 eleq1d 0˙=ify=xFx0˙0˙-GFymrClsSubGrpGSIxify=xFx0˙-GFymrClsSubGrpGSIx
70 simpr φGF=0˙xIyIy=xy=x
71 70 fveq2d φGF=0˙xIyIy=xFy=Fx
72 71 oveq2d φGF=0˙xIyIy=xFx-GFy=Fx-GFx
73 6 1 19 grpsubid GGrpFxBaseGFx-GFx=0˙
74 38 39 73 syl2anc φGF=0˙xIFx-GFx=0˙
75 1 subg0cl mrClsSubGrpGSIxSubGrpG0˙mrClsSubGrpGSIx
76 63 75 syl φGF=0˙xI0˙mrClsSubGrpGSIx
77 74 76 eqeltrd φGF=0˙xIFx-GFxmrClsSubGrpGSIx
78 77 ad2antrr φGF=0˙xIyIy=xFx-GFxmrClsSubGrpGSIx
79 72 78 eqeltrd φGF=0˙xIyIy=xFx-GFymrClsSubGrpGSIx
80 63 ad2antrr φGF=0˙xIyI¬y=xmrClsSubGrpGSIxSubGrpG
81 80 75 syl φGF=0˙xIyI¬y=x0˙mrClsSubGrpGSIx
82 50 61 60 mrcssidd φGF=0˙xISIxmrClsSubGrpGSIx
83 82 ad2antrr φGF=0˙xIyI¬y=xSIxmrClsSubGrpGSIx
84 2 12 13 18 dprdfcl φGF=0˙xIyIFySy
85 84 adantr φGF=0˙xIyI¬y=xFySy
86 53 ffnd φGF=0˙xISFnI
87 86 ad2antrr φGF=0˙xIyI¬y=xSFnI
88 difssd φGF=0˙xIyI¬y=xIxI
89 df-ne yx¬y=x
90 eldifsn yIxyIyx
91 90 biimpri yIyxyIx
92 89 91 sylan2br yI¬y=xyIx
93 92 adantll φGF=0˙xIyI¬y=xyIx
94 fnfvima SFnIIxIyIxSySIx
95 87 88 93 94 syl3anc φGF=0˙xIyI¬y=xSySIx
96 elunii FySySySIxFySIx
97 85 95 96 syl2anc φGF=0˙xIyI¬y=xFySIx
98 83 97 sseldd φGF=0˙xIyI¬y=xFymrClsSubGrpGSIx
99 19 subgsubcl mrClsSubGrpGSIxSubGrpG0˙mrClsSubGrpGSIxFymrClsSubGrpGSIx0˙-GFymrClsSubGrpGSIx
100 80 81 98 99 syl3anc φGF=0˙xIyI¬y=x0˙-GFymrClsSubGrpGSIx
101 67 69 79 100 ifbothda φGF=0˙xIyIify=xFx0˙-GFymrClsSubGrpGSIx
102 101 fmpttd φGF=0˙xIyIify=xFx0˙-GFy:ImrClsSubGrpGSIx
103 20 simpld φGF=0˙xIyIify=xFx0˙-GfFW
104 32 103 eqeltrrd φGF=0˙xIyIify=xFx0˙-GFyW
105 2 12 13 104 44 dprdfcntz φGF=0˙xIranyIify=xFx0˙-GFyCntzGranyIify=xFx0˙-GFy
106 2 12 13 104 dprdffsupp φGF=0˙xIfinSupp0˙yIify=xFx0˙-GFy
107 1 44 47 23 65 102 105 106 gsumzsubmcl φGF=0˙xIGyIify=xFx0˙-GFymrClsSubGrpGSIx
108 43 107 eqeltrrd φGF=0˙xIFxmrClsSubGrpGSIx
109 11 108 elind φGF=0˙xIFxSxmrClsSubGrpGSIx
110 12 13 14 1 61 dprddisj φGF=0˙xISxmrClsSubGrpGSIx=0˙
111 109 110 eleqtrd φGF=0˙xIFx0˙
112 elsni Fx0˙Fx=0˙
113 111 112 syl φGF=0˙xIFx=0˙
114 113 mpteq2dva φGF=0˙xIFx=xI0˙
115 9 114 eqtrd φGF=0˙F=xI0˙
116 115 ex φGF=0˙F=xI0˙
117 1 gsumz GMndIVGxI0˙=0˙
118 46 22 117 syl2anc φGxI0˙=0˙
119 oveq2 F=xI0˙GF=GxI0˙
120 119 eqeq1d F=xI0˙GF=0˙GxI0˙=0˙
121 118 120 syl5ibrcom φF=xI0˙GF=0˙
122 116 121 impbid φGF=0˙F=xI0˙