Metamath Proof Explorer


Theorem efgrelexlemb

Description: If two words A , B are related under the free group equivalence, then there exist two extension sequences a , b such that a ends at A , b ends at B , and a and B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
efgrelexlem.1 L=ij|cS-1idS-1jc0=d0
Assertion efgrelexlemb ˙L

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 efgrelexlem.1 L=ij|cS-1idS-1jc0=d0
8 1 2 3 4 efgval2 ˙=r|rErWaWranTaar
9 7 relopabiv RelL
10 9 a1i RelL
11 simpr fLgfLg
12 eqcom a0=b0b0=a0
13 12 2rexbii aS-1fbS-1ga0=b0aS-1fbS-1gb0=a0
14 rexcom aS-1fbS-1gb0=a0bS-1gaS-1fb0=a0
15 13 14 bitri aS-1fbS-1ga0=b0bS-1gaS-1fb0=a0
16 1 2 3 4 5 6 7 efgrelexlema fLgaS-1fbS-1ga0=b0
17 1 2 3 4 5 6 7 efgrelexlema gLfbS-1gaS-1fb0=a0
18 15 16 17 3bitr4i fLggLf
19 11 18 sylib fLggLf
20 1 2 3 4 5 6 7 efgrelexlema gLhrS-1gsS-1hr0=s0
21 reeanv aS-1frS-1gbS-1ga0=b0sS-1hr0=s0aS-1fbS-1ga0=b0rS-1gsS-1hr0=s0
22 1 2 3 4 5 6 efgsfo S:domSontoW
23 fofn S:domSontoWSFndomS
24 22 23 ax-mp SFndomS
25 fniniseg SFndomSrS-1grdomSSr=g
26 24 25 ax-mp rS-1grdomSSr=g
27 fniniseg SFndomSbS-1gbdomSSb=g
28 24 27 ax-mp bS-1gbdomSSb=g
29 eqtr3 Sr=gSb=gSr=Sb
30 1 2 3 4 5 6 efgred rdomSbdomSSr=Sbr0=b0
31 30 eqcomd rdomSbdomSSr=Sbb0=r0
32 31 3expa rdomSbdomSSr=Sbb0=r0
33 29 32 sylan2 rdomSbdomSSr=gSb=gb0=r0
34 33 an4s rdomSSr=gbdomSSb=gb0=r0
35 26 28 34 syl2anb rS-1gbS-1gb0=r0
36 eqeq2 r0=s0b0=r0b0=s0
37 35 36 syl5ibcom rS-1gbS-1gr0=s0b0=s0
38 37 reximdv rS-1gbS-1gsS-1hr0=s0sS-1hb0=s0
39 eqeq1 a0=b0a0=s0b0=s0
40 39 rexbidv a0=b0sS-1ha0=s0sS-1hb0=s0
41 40 imbi2d a0=b0sS-1hr0=s0sS-1ha0=s0sS-1hr0=s0sS-1hb0=s0
42 38 41 syl5ibrcom rS-1gbS-1ga0=b0sS-1hr0=s0sS-1ha0=s0
43 42 rexlimdva rS-1gbS-1ga0=b0sS-1hr0=s0sS-1ha0=s0
44 43 impd rS-1gbS-1ga0=b0sS-1hr0=s0sS-1ha0=s0
45 44 rexlimiv rS-1gbS-1ga0=b0sS-1hr0=s0sS-1ha0=s0
46 45 reximi aS-1frS-1gbS-1ga0=b0sS-1hr0=s0aS-1fsS-1ha0=s0
47 21 46 sylbir aS-1fbS-1ga0=b0rS-1gsS-1hr0=s0aS-1fsS-1ha0=s0
48 16 20 47 syl2anb fLggLhaS-1fsS-1ha0=s0
49 1 2 3 4 5 6 7 efgrelexlema fLhaS-1fsS-1ha0=s0
50 48 49 sylibr fLggLhfLh
51 50 adantl fLggLhfLh
52 eqid a0=a0
53 fveq1 b=ab0=a0
54 53 rspceeqv aS-1fa0=a0bS-1fa0=b0
55 52 54 mpan2 aS-1fbS-1fa0=b0
56 55 pm4.71i aS-1faS-1fbS-1fa0=b0
57 fniniseg SFndomSaS-1fadomSSa=f
58 24 57 ax-mp aS-1fadomSSa=f
59 56 58 bitr3i aS-1fbS-1fa0=b0adomSSa=f
60 59 rexbii2 aS-1fbS-1fa0=b0adomSSa=f
61 1 2 3 4 5 6 7 efgrelexlema fLfaS-1fbS-1fa0=b0
62 forn S:domSontoWranS=W
63 22 62 ax-mp ranS=W
64 63 eleq2i franSfW
65 fvelrnb SFndomSfranSadomSSa=f
66 24 65 ax-mp franSadomSSa=f
67 64 66 bitr3i fWadomSSa=f
68 60 61 67 3bitr4ri fWfLf
69 68 a1i fWfLf
70 10 19 51 69 iserd LErW
71 70 mptru LErW
72 simpl aWbranTaaW
73 foelrn S:domSontoWaWrdomSa=Sr
74 22 72 73 sylancr aWbranTardomSa=Sr
75 simprl aWbranTardomSa=SrrdomS
76 simprr aWbranTardomSa=Sra=Sr
77 76 eqcomd aWbranTardomSa=SrSr=a
78 fniniseg SFndomSrS-1ardomSSr=a
79 24 78 ax-mp rS-1ardomSSr=a
80 75 77 79 sylanbrc aWbranTardomSa=SrrS-1a
81 simplr aWbranTardomSa=SrbranTa
82 76 fveq2d aWbranTardomSa=SrTa=TSr
83 82 rneqd aWbranTardomSa=SrranTa=ranTSr
84 81 83 eleqtrd aWbranTardomSa=SrbranTSr
85 1 2 3 4 5 6 efgsp1 rdomSbranTSrr++⟨“b”⟩domS
86 75 84 85 syl2anc aWbranTardomSa=Srr++⟨“b”⟩domS
87 1 2 3 4 5 6 efgsdm rdomSrWordWr0Di1..^rriranTri1
88 87 simp1bi rdomSrWordW
89 88 ad2antrl aWbranTardomSa=SrrWordW
90 89 eldifad aWbranTardomSa=SrrWordW
91 1 2 3 4 efgtf aWTa=f0a,gI×2𝑜aspliceff⟨“gMg”⟩Ta:0a×I×2𝑜W
92 91 simprd aWTa:0a×I×2𝑜W
93 92 frnd aWranTaW
94 93 sselda aWbranTabW
95 94 adantr aWbranTardomSa=SrbW
96 1 2 3 4 5 6 efgsval2 rWordWbWr++⟨“b”⟩domSSr++⟨“b”⟩=b
97 90 95 86 96 syl3anc aWbranTardomSa=SrSr++⟨“b”⟩=b
98 fniniseg SFndomSr++⟨“b”⟩S-1br++⟨“b”⟩domSSr++⟨“b”⟩=b
99 24 98 ax-mp r++⟨“b”⟩S-1br++⟨“b”⟩domSSr++⟨“b”⟩=b
100 86 97 99 sylanbrc aWbranTardomSa=Srr++⟨“b”⟩S-1b
101 95 s1cld aWbranTardomSa=Sr⟨“b”⟩WordW
102 eldifsn rWordWrWordWr
103 lennncl rWordWrr
104 102 103 sylbi rWordWr
105 89 104 syl aWbranTardomSa=Srr
106 lbfzo0 00..^rr
107 105 106 sylibr aWbranTardomSa=Sr00..^r
108 ccatval1 rWordW⟨“b”⟩WordW00..^rr++⟨“b”⟩0=r0
109 90 101 107 108 syl3anc aWbranTardomSa=Srr++⟨“b”⟩0=r0
110 109 eqcomd aWbranTardomSa=Srr0=r++⟨“b”⟩0
111 fveq1 s=r++⟨“b”⟩s0=r++⟨“b”⟩0
112 111 rspceeqv r++⟨“b”⟩S-1br0=r++⟨“b”⟩0sS-1br0=s0
113 100 110 112 syl2anc aWbranTardomSa=SrsS-1br0=s0
114 74 80 113 reximssdv aWbranTarS-1asS-1br0=s0
115 1 2 3 4 5 6 7 efgrelexlema aLbrS-1asS-1br0=s0
116 114 115 sylibr aWbranTaaLb
117 vex bV
118 vex aV
119 117 118 elec baLaLb
120 116 119 sylibr aWbranTabaL
121 120 ex aWbranTabaL
122 121 ssrdv aWranTaaL
123 122 rgen aWranTaaL
124 1 fvexi WV
125 erex LErWWVLV
126 71 124 125 mp2 LV
127 ereq1 r=LrErWLErW
128 eceq2 r=Lar=aL
129 128 sseq2d r=LranTaarranTaaL
130 129 ralbidv r=LaWranTaaraWranTaaL
131 127 130 anbi12d r=LrErWaWranTaarLErWaWranTaaL
132 126 131 elab Lr|rErWaWranTaarLErWaWranTaaL
133 71 123 132 mpbir2an Lr|rErWaWranTaar
134 intss1 Lr|rErWaWranTaarr|rErWaWranTaarL
135 133 134 ax-mp r|rErWaWranTaarL
136 8 135 eqsstri ˙L