Metamath Proof Explorer


Theorem esum2dlem

Description: Lemma for esum2d (finite case). (Contributed by Thierry Arnoux, 17-May-2020) (Proof shortened by AV, 17-Sep-2021)

Ref Expression
Hypotheses esum2d.0 _kF
esum2d.1 z=jkF=C
esum2d.2 φAV
esum2d.3 φjABW
esum2d.4 φjAkBC0+∞
esum2dlem.e φAFin
Assertion esum2dlem φ*jA*kBC=*zjAj×BF

Proof

Step Hyp Ref Expression
1 esum2d.0 _kF
2 esum2d.1 z=jkF=C
3 esum2d.2 φAV
4 esum2d.3 φjABW
5 esum2d.4 φjAkBC0+∞
6 esum2dlem.e φAFin
7 esumeq1 a=*ja*kBC=*j*kBC
8 nfv za=
9 iuneq1 a=jaj×B=jj×B
10 8 9 esumeq1d a=*zjaj×BF=*zjj×BF
11 7 10 eqeq12d a=*ja*kBC=*zjaj×BF*j*kBC=*zjj×BF
12 esumeq1 a=b*ja*kBC=*jb*kBC
13 nfv za=b
14 iuneq1 a=bjaj×B=jbj×B
15 13 14 esumeq1d a=b*zjaj×BF=*zjbj×BF
16 12 15 eqeq12d a=b*ja*kBC=*zjaj×BF*jb*kBC=*zjbj×BF
17 esumeq1 a=bl*ja*kBC=*jbl*kBC
18 nfv za=bl
19 iuneq1 a=bljaj×B=jblj×B
20 18 19 esumeq1d a=bl*zjaj×BF=*zjblj×BF
21 17 20 eqeq12d a=bl*ja*kBC=*zjaj×BF*jbl*kBC=*zjblj×BF
22 esumeq1 a=A*ja*kBC=*jA*kBC
23 nfv za=A
24 iuneq1 a=Ajaj×B=jAj×B
25 23 24 esumeq1d a=A*zjaj×BF=*zjAj×BF
26 22 25 eqeq12d a=A*ja*kBC=*zjaj×BF*jA*kBC=*zjAj×BF
27 esumnul *zF=0
28 0iun jj×B=
29 esumeq1 jj×B=*zjj×BF=*zF
30 28 29 ax-mp *zjj×BF=*zF
31 esumnul *j*kBC=0
32 27 30 31 3eqtr4ri *j*kBC=*zjj×BF
33 32 a1i φ*j*kBC=*zjj×BF
34 simpr φbAlAb*jb*kBC=*zjbj×BF*jb*kBC=*zjbj×BF
35 nfcsb1v _jl/jB
36 nfcsb1v _jl/jC
37 35 36 nfesum2 _j*kl/jBl/jC
38 csbeq1a j=lB=l/jB
39 csbeq1a j=lC=l/jC
40 38 39 esumeq12d j=l*kBC=*kl/jBl/jC
41 40 adantl φbAlAbj=l*kBC=*kl/jBl/jC
42 simprr φbAlAblAb
43 42 eldifad φbAlAblA
44 4 adantlr φbAlAbjABW
45 44 ralrimiva φbAlAbjABW
46 rspcsbela lAjABWl/jBW
47 43 45 46 syl2anc φbAlAbl/jBW
48 simpll φbAlAbkl/jBφ
49 43 adantr φbAlAbkl/jBlA
50 simpr φbAlAbkl/jBkl/jB
51 5 ex φjAkBC0+∞
52 51 sbcimdv φ[˙l/j]˙jAkB[˙l/j]˙C0+∞
53 sbcan [˙l/j]˙jAkB[˙l/j]˙jA[˙l/j]˙kB
54 sbcel1v [˙l/j]˙jAlA
55 sbcel2 [˙l/j]˙kBkl/jB
56 54 55 anbi12i [˙l/j]˙jA[˙l/j]˙kBlAkl/jB
57 53 56 bitri [˙l/j]˙jAkBlAkl/jB
58 vex lV
59 sbcel1g lV[˙l/j]˙C0+∞l/jC0+∞
60 58 59 ax-mp [˙l/j]˙C0+∞l/jC0+∞
61 52 57 60 3imtr3g φlAkl/jBl/jC0+∞
62 61 imp φlAkl/jBl/jC0+∞
63 48 49 50 62 syl12anc φbAlAbkl/jBl/jC0+∞
64 63 ralrimiva φbAlAbkl/jBl/jC0+∞
65 nfcv _kl/jB
66 65 esumcl l/jBWkl/jBl/jC0+∞*kl/jBl/jC0+∞
67 47 64 66 syl2anc φbAlAb*kl/jBl/jC0+∞
68 37 41 42 67 esumsnf φbAlAb*jl*kBC=*kl/jBl/jC
69 nfv kφbAlAb
70 nfv jz=lk
71 36 nfeq2 jF=l/jC
72 70 71 nfim jz=lkF=l/jC
73 opeq1 j=ljk=lk
74 73 eqeq2d j=lz=jkz=lk
75 39 eqeq2d j=lF=CF=l/jC
76 74 75 imbi12d j=lz=jkF=Cz=lkF=l/jC
77 72 76 2 chvarfv z=lkF=l/jC
78 vsnid jj
79 78 a1i φjAkBjj
80 simpr φjAkBkB
81 79 80 opelxpd φjAkBjkj×B
82 xp2nd zj×B2ndzB
83 xp1st zj×B1stzj
84 fvex 1stzV
85 84 elsn 1stzj1stz=j
86 83 85 sylib zj×B1stz=j
87 eqop zj×Bz=jk1stz=j2ndz=k
88 86 87 mpbirand zj×Bz=jk2ndz=k
89 eqcom 2ndz=kk=2ndz
90 88 89 bitrdi zj×Bz=jkk=2ndz
91 90 ad2antlr φjAzj×BkBz=jkk=2ndz
92 91 ralrimiva φjAzj×BkBz=jkk=2ndz
93 reu6i 2ndzBkBz=jkk=2ndz∃!kBz=jk
94 82 92 93 syl2an2 φjAzj×B∃!kBz=jk
95 81 94 f1mptrn φjAFunkBjk-1
96 95 ex φjAFunkBjk-1
97 96 sbcimdv φ[˙l/j]˙jA[˙l/j]˙FunkBjk-1
98 sbcfung lV[˙l/j]˙FunkBjk-1Funl/jkBjk-1
99 csbcnv l/jkBjk-1=l/jkBjk-1
100 csbmpt12 lVl/jkBjk=kl/jBl/jjk
101 csbopg lVl/jjk=l/jjl/jk
102 csbvarg lVl/jj=l
103 csbconstg lVl/jk=k
104 102 103 opeq12d lVl/jjl/jk=lk
105 101 104 eqtrd lVl/jjk=lk
106 105 mpteq2dv lVkl/jBl/jjk=kl/jBlk
107 100 106 eqtrd lVl/jkBjk=kl/jBlk
108 107 cnveqd lVl/jkBjk-1=kl/jBlk-1
109 99 108 eqtr3id lVl/jkBjk-1=kl/jBlk-1
110 109 funeqd lVFunl/jkBjk-1Funkl/jBlk-1
111 98 110 bitrd lV[˙l/j]˙FunkBjk-1Funkl/jBlk-1
112 58 111 ax-mp [˙l/j]˙FunkBjk-1Funkl/jBlk-1
113 97 54 112 3imtr3g φlAFunkl/jBlk-1
114 113 imp φlAFunkl/jBlk-1
115 43 114 syldan φbAlAbFunkl/jBlk-1
116 vsnid ll
117 116 a1i φbAlAbkl/jBll
118 117 50 opelxpd φbAlAbkl/jBlkl×l/jB
119 1 69 65 77 47 115 63 118 esumc φbAlAb*kl/jBl/jC=*zt|kl/jBt=lkF
120 nfab1 _tt|kl/jBt=lk
121 nfcv _tl×l/jB
122 opeq1 i=lik=lk
123 122 eqeq2d i=lt=ikt=lk
124 123 rexbidv i=lkl/jBt=ikkl/jBt=lk
125 58 124 rexsn ilkl/jBt=ikkl/jBt=lk
126 elxp2 tl×l/jBilkl/jBt=ik
127 abid tt|kl/jBt=lkkl/jBt=lk
128 125 126 127 3bitr4ri tt|kl/jBt=lktl×l/jB
129 120 121 128 eqri t|kl/jBt=lk=l×l/jB
130 esumeq1 t|kl/jBt=lk=l×l/jB*zt|kl/jBt=lkF=*zl×l/jBF
131 129 130 ax-mp *zt|kl/jBt=lkF=*zl×l/jBF
132 119 131 eqtrdi φbAlAb*kl/jBl/jC=*zl×l/jBF
133 68 132 eqtrd φbAlAb*jl*kBC=*zl×l/jBF
134 133 adantr φbAlAb*jb*kBC=*zjbj×BF*jl*kBC=*zl×l/jBF
135 34 134 oveq12d φbAlAb*jb*kBC=*zjbj×BF*jb*kBC+𝑒*jl*kBC=*zjbj×BF+𝑒*zl×l/jBF
136 nfv jφbAlAb
137 nfcv _jb
138 nfcv _jl
139 vex bV
140 139 a1i φbAlAbbV
141 vsnex lV
142 141 a1i φbAlAblV
143 42 eldifbd φbAlAb¬lb
144 disjsn bl=¬lb
145 143 144 sylibr φbAlAbbl=
146 simpll φbAlAbjbφ
147 simprl φbAlAbbA
148 147 sselda φbAlAbjbjA
149 5 anassrs φjAkBC0+∞
150 149 ralrimiva φjAkBC0+∞
151 nfcv _kB
152 151 esumcl BWkBC0+∞*kBC0+∞
153 4 150 152 syl2anc φjA*kBC0+∞
154 146 148 153 syl2anc φbAlAbjb*kBC0+∞
155 simpll φbAlAbjlφ
156 43 snssd φbAlAblA
157 156 sselda φbAlAbjljA
158 155 157 153 syl2anc φbAlAbjl*kBC0+∞
159 136 137 138 140 142 145 154 158 esumsplit φbAlAb*jbl*kBC=*jb*kBC+𝑒*jl*kBC
160 159 adantr φbAlAb*jb*kBC=*zjbj×BF*jbl*kBC=*jb*kBC+𝑒*jl*kBC
161 iunxun jblj×B=jbj×Bjlj×B
162 138 35 nfxp _jl×l/jB
163 sneq j=lj=l
164 163 38 xpeq12d j=lj×B=l×l/jB
165 162 164 iunxsngf lVjlj×B=l×l/jB
166 58 165 ax-mp jlj×B=l×l/jB
167 166 uneq2i jbj×Bjlj×B=jbj×Bl×l/jB
168 161 167 eqtri jblj×B=jbj×Bl×l/jB
169 esumeq1 jblj×B=jbj×Bl×l/jB*zjblj×BF=*zjbj×Bl×l/jBF
170 168 169 ax-mp *zjblj×BF=*zjbj×Bl×l/jBF
171 nfv zφbAlAb
172 nfcv _zjbj×B
173 nfcv _zl×l/jB
174 vsnex jV
175 148 44 syldan φbAlAbjbBW
176 xpexg jVBWj×BV
177 174 175 176 sylancr φbAlAbjbj×BV
178 177 ralrimiva φbAlAbjbj×BV
179 iunexg bVjbj×BVjbj×BV
180 139 178 179 sylancr φbAlAbjbj×BV
181 xpexg lVl/jBWl×l/jBV
182 141 47 181 sylancr φbAlAbl×l/jBV
183 simpr φbAlAbjbjb
184 143 adantr φbAlAbjb¬lb
185 nelne2 jb¬lbjl
186 183 184 185 syl2anc φbAlAbjbjl
187 disjsn2 jljl=
188 xpdisj1 jl=j×Bl×l/jB=
189 186 187 188 3syl φbAlAbjbj×Bl×l/jB=
190 189 iuneq2dv φbAlAbjbj×Bl×l/jB=jb
191 162 iunin1f jbj×Bl×l/jB=jbj×Bl×l/jB
192 iun0 jb=
193 190 191 192 3eqtr3g φbAlAbjbj×Bl×l/jB=
194 simpll φbAlAbzjbj×Bφ
195 iunss1 bAjbj×BjAj×B
196 147 195 syl φbAlAbjbj×BjAj×B
197 196 sselda φbAlAbzjbj×BzjAj×B
198 nfv jφ
199 nfiu1 _jjAj×B
200 199 nfcri jzjAj×B
201 198 200 nfan jφzjAj×B
202 nfv kφzjAj×BjAzj×B
203 nfcv _k0+∞
204 1 203 nfel kF0+∞
205 2 adantl φzjAj×BjAzj×BkBz=jkF=C
206 simp-5l φzjAj×BjAzj×BkBz=jkφ
207 simp-4r φzjAj×BjAzj×BkBz=jkjA
208 simplr φzjAj×BjAzj×BkBz=jkkB
209 206 207 208 5 syl12anc φzjAj×BjAzj×BkBz=jkC0+∞
210 205 209 eqeltrd φzjAj×BjAzj×BkBz=jkF0+∞
211 elsnxp jAzj×BkBz=jk
212 211 biimpa jAzj×BkBz=jk
213 212 adantll φzjAj×BjAzj×BkBz=jk
214 202 204 210 213 r19.29af2 φzjAj×BjAzj×BF0+∞
215 simpr φzjAj×BzjAj×B
216 eliun zjAj×BjAzj×B
217 215 216 sylib φzjAj×BjAzj×B
218 201 214 217 r19.29af φzjAj×BF0+∞
219 194 197 218 syl2anc φbAlAbzjbj×BF0+∞
220 simpll φbAlAbzl×l/jBφ
221 nfcv _jA
222 nfcv _jl
223 221 222 162 164 ssiun2sf lAl×l/jBjAj×B
224 43 223 syl φbAlAbl×l/jBjAj×B
225 224 sselda φbAlAbzl×l/jBzjAj×B
226 220 225 218 syl2anc φbAlAbzl×l/jBF0+∞
227 171 172 173 180 182 193 219 226 esumsplit φbAlAb*zjbj×Bl×l/jBF=*zjbj×BF+𝑒*zl×l/jBF
228 170 227 eqtrid φbAlAb*zjblj×BF=*zjbj×BF+𝑒*zl×l/jBF
229 228 adantr φbAlAb*jb*kBC=*zjbj×BF*zjblj×BF=*zjbj×BF+𝑒*zl×l/jBF
230 135 160 229 3eqtr4d φbAlAb*jb*kBC=*zjbj×BF*jbl*kBC=*zjblj×BF
231 230 ex φbAlAb*jb*kBC=*zjbj×BF*jbl*kBC=*zjblj×BF
232 11 16 21 26 33 231 6 findcard2d φ*jA*kBC=*zjAj×BF