Metamath Proof Explorer


Theorem fldextrspunlsp

Description: Lemma for fldextrspunfld . The subring generated by the union of two field extensions G and H is the vector sub- G space generated by a basis B of H . Part of the proof of Proposition 5, Chapter 5, of BourbakiAlg2 p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses fldextrspunfld.k K = L 𝑠 F
fldextrspunfld.i I = L 𝑠 G
fldextrspunfld.j J = L 𝑠 H
fldextrspunfld.2 φ L Field
fldextrspunfld.3 φ F SubDRing I
fldextrspunfld.4 φ F SubDRing J
fldextrspunfld.5 φ G SubDRing L
fldextrspunfld.6 φ H SubDRing L
fldextrspunlsp.n N = RingSpan L
fldextrspunlsp.c C = N G H
fldextrspunlsp.e E = L 𝑠 C
fldextrspunlsp.1 φ B LBasis subringAlg J F
fldextrspunlsp.2 φ B Fin
Assertion fldextrspunlsp φ C = LSpan subringAlg L G B

Proof

Step Hyp Ref Expression
1 fldextrspunfld.k K = L 𝑠 F
2 fldextrspunfld.i I = L 𝑠 G
3 fldextrspunfld.j J = L 𝑠 H
4 fldextrspunfld.2 φ L Field
5 fldextrspunfld.3 φ F SubDRing I
6 fldextrspunfld.4 φ F SubDRing J
7 fldextrspunfld.5 φ G SubDRing L
8 fldextrspunfld.6 φ H SubDRing L
9 fldextrspunlsp.n N = RingSpan L
10 fldextrspunlsp.c C = N G H
11 fldextrspunlsp.e E = L 𝑠 C
12 fldextrspunlsp.1 φ B LBasis subringAlg J F
13 fldextrspunlsp.2 φ B Fin
14 10 a1i φ C = N G H
15 14 eleq2d φ x C x N G H
16 eqid Base L = Base L
17 eqid L = L
18 eqid 0 L = 0 L
19 4 fldcrngd φ L CRing
20 sdrgsubrg G SubDRing L G SubRing L
21 7 20 syl φ G SubRing L
22 sdrgsubrg H SubDRing L H SubRing L
23 8 22 syl φ H SubRing L
24 16 17 18 9 19 21 23 elrgspnsubrun φ x N G H p G H finSupp 0 L p x = L f H p f L f
25 16 subrgss G SubRing L G Base L
26 21 25 syl φ G Base L
27 eqid L 𝑠 G = L 𝑠 G
28 27 16 ressbas2 G Base L G = Base L 𝑠 G
29 26 28 syl φ G = Base L 𝑠 G
30 eqidd φ subringAlg L G = subringAlg L G
31 30 26 srasca φ L 𝑠 G = Scalar subringAlg L G
32 31 fveq2d φ Base L 𝑠 G = Base Scalar subringAlg L G
33 29 32 eqtr2d φ Base Scalar subringAlg L G = G
34 33 oveq1d φ Base Scalar subringAlg L G B = G B
35 19 crngringd φ L Ring
36 35 ringcmnd φ L CMnd
37 36 cmnmndd φ L Mnd
38 subrgsubg G SubRing L G SubGrp L
39 21 38 syl φ G SubGrp L
40 18 subg0cl G SubGrp L 0 L G
41 39 40 syl φ 0 L G
42 27 16 18 ress0g L Mnd 0 L G G Base L 0 L = 0 L 𝑠 G
43 37 41 26 42 syl3anc φ 0 L = 0 L 𝑠 G
44 31 fveq2d φ 0 L 𝑠 G = 0 Scalar subringAlg L G
45 43 44 eqtr2d φ 0 Scalar subringAlg L G = 0 L
46 45 breq2d φ finSupp 0 Scalar subringAlg L G a finSupp 0 L a
47 eqid subringAlg L G = subringAlg L G
48 12 mptexd φ v B a v L v V
49 47 sralmod G SubRing L subringAlg L G LMod
50 21 49 syl φ subringAlg L G LMod
51 47 48 4 50 26 gsumsra φ L v B a v L v = subringAlg L G v B a v L v
52 30 26 sravsca φ L = subringAlg L G
53 52 oveqd φ a v L v = a v subringAlg L G v
54 53 mpteq2dv φ v B a v L v = v B a v subringAlg L G v
55 54 oveq2d φ subringAlg L G v B a v L v = subringAlg L G v B a v subringAlg L G v
56 51 55 eqtr2d φ subringAlg L G v B a v subringAlg L G v = L v B a v L v
57 56 eqeq2d φ x = subringAlg L G v B a v subringAlg L G v x = L v B a v L v
58 46 57 anbi12d φ finSupp 0 Scalar subringAlg L G a x = subringAlg L G v B a v subringAlg L G v finSupp 0 L a x = L v B a v L v
59 34 58 rexeqbidv φ a Base Scalar subringAlg L G B finSupp 0 Scalar subringAlg L G a x = subringAlg L G v B a v subringAlg L G v a G B finSupp 0 L a x = L v B a v L v
60 eqid LSpan subringAlg L G = LSpan subringAlg L G
61 eqid Base subringAlg L G = Base subringAlg L G
62 eqid Base Scalar subringAlg L G = Base Scalar subringAlg L G
63 eqid Scalar subringAlg L G = Scalar subringAlg L G
64 eqid 0 Scalar subringAlg L G = 0 Scalar subringAlg L G
65 eqid subringAlg L G = subringAlg L G
66 eqid Base subringAlg J F = Base subringAlg J F
67 eqid LBasis subringAlg J F = LBasis subringAlg J F
68 66 67 lbsss B LBasis subringAlg J F B Base subringAlg J F
69 12 68 syl φ B Base subringAlg J F
70 16 subrgss H SubRing L H Base L
71 23 70 syl φ H Base L
72 3 16 ressbas2 H Base L H = Base J
73 71 72 syl φ H = Base J
74 eqidd φ subringAlg J F = subringAlg J F
75 eqid Base J = Base J
76 75 sdrgss F SubDRing J F Base J
77 6 76 syl φ F Base J
78 74 77 srabase φ Base J = Base subringAlg J F
79 73 78 eqtrd φ H = Base subringAlg J F
80 69 79 sseqtrrd φ B H
81 80 71 sstrd φ B Base L
82 30 26 srabase φ Base L = Base subringAlg L G
83 81 82 sseqtrd φ B Base subringAlg L G
84 60 61 62 63 64 65 50 83 ellspds φ x LSpan subringAlg L G B a Base Scalar subringAlg L G B finSupp 0 Scalar subringAlg L G a x = subringAlg L G v B a v subringAlg L G v
85 4 ad2antrr φ p G H finSupp 0 L p x = L f H p f L f L Field
86 5 ad2antrr φ p G H finSupp 0 L p x = L f H p f L f F SubDRing I
87 6 ad2antrr φ p G H finSupp 0 L p x = L f H p f L f F SubDRing J
88 7 ad2antrr φ p G H finSupp 0 L p x = L f H p f L f G SubDRing L
89 8 ad2antrr φ p G H finSupp 0 L p x = L f H p f L f H SubDRing L
90 12 ad2antrr φ p G H finSupp 0 L p x = L f H p f L f B LBasis subringAlg J F
91 13 ad2antrr φ p G H finSupp 0 L p x = L f H p f L f B Fin
92 simplr φ p G H finSupp 0 L p x = L f H p f L f p G H
93 89 88 92 elmaprd φ p G H finSupp 0 L p x = L f H p f L f p : H G
94 simprl φ p G H finSupp 0 L p x = L f H p f L f finSupp 0 L p
95 simprr φ p G H finSupp 0 L p x = L f H p f L f x = L f H p f L f
96 fveq2 f = h p f = p h
97 id f = h f = h
98 96 97 oveq12d f = h p f L f = p h L h
99 98 cbvmptv f H p f L f = h H p h L h
100 99 oveq2i L f H p f L f = L h H p h L h
101 95 100 eqtrdi φ p G H finSupp 0 L p x = L f H p f L f x = L h H p h L h
102 1 2 3 85 86 87 88 89 9 10 11 90 91 93 94 101 fldextrspunlsplem φ p G H finSupp 0 L p x = L f H p f L f a G B finSupp 0 L a x = L v B a v L v
103 102 r19.29an φ p G H finSupp 0 L p x = L f H p f L f a G B finSupp 0 L a x = L v B a v L v
104 breq1 p = g H if g B a g 0 L finSupp 0 L p finSupp 0 L g H if g B a g 0 L
105 fveq1 p = g H if g B a g 0 L p f = g H if g B a g 0 L f
106 105 oveq1d p = g H if g B a g 0 L p f L f = g H if g B a g 0 L f L f
107 106 mpteq2dv p = g H if g B a g 0 L f H p f L f = f H g H if g B a g 0 L f L f
108 107 oveq2d p = g H if g B a g 0 L L f H p f L f = L f H g H if g B a g 0 L f L f
109 108 eqeq2d p = g H if g B a g 0 L x = L f H p f L f x = L f H g H if g B a g 0 L f L f
110 104 109 anbi12d p = g H if g B a g 0 L finSupp 0 L p x = L f H p f L f finSupp 0 L g H if g B a g 0 L x = L f H g H if g B a g 0 L f L f
111 7 ad2antrr φ a G B finSupp 0 L a x = L v B a v L v G SubDRing L
112 8 ad2antrr φ a G B finSupp 0 L a x = L v B a v L v H SubDRing L
113 12 adantr φ a G B B LBasis subringAlg J F
114 7 adantr φ a G B G SubDRing L
115 simpr φ a G B a G B
116 113 114 115 elmaprd φ a G B a : B G
117 116 ad2antrr φ a G B finSupp 0 L a x = L v B a v L v g H a : B G
118 117 ffvelcdmda φ a G B finSupp 0 L a x = L v B a v L v g H g B a g G
119 41 ad4antr φ a G B finSupp 0 L a x = L v B a v L v g H ¬ g B 0 L G
120 118 119 ifclda φ a G B finSupp 0 L a x = L v B a v L v g H if g B a g 0 L G
121 120 fmpttd φ a G B finSupp 0 L a x = L v B a v L v g H if g B a g 0 L : H G
122 111 112 121 elmapdd φ a G B finSupp 0 L a x = L v B a v L v g H if g B a g 0 L G H
123 fvexd φ a G B finSupp 0 L a x = L v B a v L v 0 L V
124 121 ffund φ a G B finSupp 0 L a x = L v B a v L v Fun g H if g B a g 0 L
125 simprl φ a G B finSupp 0 L a x = L v B a v L v finSupp 0 L a
126 116 ffnd φ a G B a Fn B
127 126 ad3antrrr φ a G B finSupp 0 L a x = L v B a v L v g H supp 0 L a g B a Fn B
128 12 ad4antr φ a G B finSupp 0 L a x = L v B a v L v g H supp 0 L a g B B LBasis subringAlg J F
129 fvexd φ a G B finSupp 0 L a x = L v B a v L v g H supp 0 L a g B 0 L V
130 simpr φ a G B finSupp 0 L a x = L v B a v L v g H supp 0 L a g B g B
131 simplr φ a G B finSupp 0 L a x = L v B a v L v g H supp 0 L a g B g H supp 0 L a
132 131 eldifbd φ a G B finSupp 0 L a x = L v B a v L v g H supp 0 L a g B ¬ g supp 0 L a
133 130 132 eldifd φ a G B finSupp 0 L a x = L v B a v L v g H supp 0 L a g B g B supp 0 L a
134 127 128 129 133 fvdifsupp φ a G B finSupp 0 L a x = L v B a v L v g H supp 0 L a g B a g = 0 L
135 eqidd φ a G B finSupp 0 L a x = L v B a v L v g H supp 0 L a ¬ g B 0 L = 0 L
136 134 135 ifeqda φ a G B finSupp 0 L a x = L v B a v L v g H supp 0 L a if g B a g 0 L = 0 L
137 136 112 suppss2 φ a G B finSupp 0 L a x = L v B a v L v g H if g B a g 0 L supp 0 L a supp 0 L
138 122 123 124 125 137 fsuppsssuppgd φ a G B finSupp 0 L a x = L v B a v L v finSupp 0 L g H if g B a g 0 L
139 eqid g H if g B a g 0 L = g H if g B a g 0 L
140 simpr φ a G B finSupp 0 L a f supp 0 L a g = f g = f
141 suppssdm a supp 0 L dom a
142 116 fdmd φ a G B dom a = B
143 142 adantr φ a G B finSupp 0 L a dom a = B
144 141 143 sseqtrid φ a G B finSupp 0 L a a supp 0 L B
145 144 sselda φ a G B finSupp 0 L a f supp 0 L a f B
146 145 adantr φ a G B finSupp 0 L a f supp 0 L a g = f f B
147 140 146 eqeltrd φ a G B finSupp 0 L a f supp 0 L a g = f g B
148 147 iftrued φ a G B finSupp 0 L a f supp 0 L a g = f if g B a g 0 L = a g
149 fveq2 g = f a g = a f
150 149 adantl φ a G B finSupp 0 L a f supp 0 L a g = f a g = a f
151 148 150 eqtrd φ a G B finSupp 0 L a f supp 0 L a g = f if g B a g 0 L = a f
152 80 ad2antrr φ a G B finSupp 0 L a B H
153 144 152 sstrd φ a G B finSupp 0 L a a supp 0 L H
154 153 sselda φ a G B finSupp 0 L a f supp 0 L a f H
155 fvexd φ a G B finSupp 0 L a f supp 0 L a a f V
156 139 151 154 155 fvmptd2 φ a G B finSupp 0 L a f supp 0 L a g H if g B a g 0 L f = a f
157 156 oveq1d φ a G B finSupp 0 L a f supp 0 L a g H if g B a g 0 L f L f = a f L f
158 157 mpteq2dva φ a G B finSupp 0 L a f supp 0 L a g H if g B a g 0 L f L f = f supp 0 L a a f L f
159 fveq2 f = v a f = a v
160 id f = v f = v
161 159 160 oveq12d f = v a f L f = a v L v
162 161 cbvmptv f supp 0 L a a f L f = v supp 0 L a a v L v
163 158 162 eqtrdi φ a G B finSupp 0 L a f supp 0 L a g H if g B a g 0 L f L f = v supp 0 L a a v L v
164 163 oveq2d φ a G B finSupp 0 L a L f a supp 0 L g H if g B a g 0 L f L f = L v a supp 0 L a v L v
165 36 ad2antrr φ a G B finSupp 0 L a L CMnd
166 8 ad2antrr φ a G B finSupp 0 L a H SubDRing L
167 eleq1w g = f g B f B
168 167 149 ifbieq1d g = f if g B a g 0 L = if f B a f 0 L
169 simpr φ a G B finSupp 0 L a f H supp 0 L a f H supp 0 L a
170 169 eldifad φ a G B finSupp 0 L a f H supp 0 L a f H
171 fvexd φ a G B finSupp 0 L a f H supp 0 L a a f V
172 fvexd φ a G B finSupp 0 L a f H supp 0 L a 0 L V
173 171 172 ifcld φ a G B finSupp 0 L a f H supp 0 L a if f B a f 0 L V
174 139 168 170 173 fvmptd3 φ a G B finSupp 0 L a f H supp 0 L a g H if g B a g 0 L f = if f B a f 0 L
175 174 oveq1d φ a G B finSupp 0 L a f H supp 0 L a g H if g B a g 0 L f L f = if f B a f 0 L L f
176 126 ad3antrrr φ a G B finSupp 0 L a f H supp 0 L a f B a Fn B
177 12 ad4antr φ a G B finSupp 0 L a f H supp 0 L a f B B LBasis subringAlg J F
178 fvexd φ a G B finSupp 0 L a f H supp 0 L a f B 0 L V
179 simpr φ a G B finSupp 0 L a f H supp 0 L a f B f B
180 simplr φ a G B finSupp 0 L a f H supp 0 L a f B f H supp 0 L a
181 180 eldifbd φ a G B finSupp 0 L a f H supp 0 L a f B ¬ f supp 0 L a
182 179 181 eldifd φ a G B finSupp 0 L a f H supp 0 L a f B f B supp 0 L a
183 176 177 178 182 fvdifsupp φ a G B finSupp 0 L a f H supp 0 L a f B a f = 0 L
184 eqidd φ a G B finSupp 0 L a f H supp 0 L a ¬ f B 0 L = 0 L
185 183 184 ifeqda φ a G B finSupp 0 L a f H supp 0 L a if f B a f 0 L = 0 L
186 185 oveq1d φ a G B finSupp 0 L a f H supp 0 L a if f B a f 0 L L f = 0 L L f
187 35 ad3antrrr φ a G B finSupp 0 L a f H supp 0 L a L Ring
188 166 22 70 3syl φ a G B finSupp 0 L a H Base L
189 188 ssdifssd φ a G B finSupp 0 L a H supp 0 L a Base L
190 189 sselda φ a G B finSupp 0 L a f H supp 0 L a f Base L
191 16 17 18 187 190 ringlzd φ a G B finSupp 0 L a f H supp 0 L a 0 L L f = 0 L
192 175 186 191 3eqtrd φ a G B finSupp 0 L a f H supp 0 L a g H if g B a g 0 L f L f = 0 L
193 simpr φ a G B finSupp 0 L a finSupp 0 L a
194 193 fsuppimpd φ a G B finSupp 0 L a a supp 0 L Fin
195 35 ad3antrrr φ a G B finSupp 0 L a f H L Ring
196 26 ad4antr φ a G B finSupp 0 L a g H g B G Base L
197 116 ad2antrr φ a G B finSupp 0 L a g H a : B G
198 197 ffvelcdmda φ a G B finSupp 0 L a g H g B a g G
199 196 198 sseldd φ a G B finSupp 0 L a g H g B a g Base L
200 26 41 sseldd φ 0 L Base L
201 200 ad4antr φ a G B finSupp 0 L a g H ¬ g B 0 L Base L
202 199 201 ifclda φ a G B finSupp 0 L a g H if g B a g 0 L Base L
203 202 fmpttd φ a G B finSupp 0 L a g H if g B a g 0 L : H Base L
204 203 ffvelcdmda φ a G B finSupp 0 L a f H g H if g B a g 0 L f Base L
205 188 sselda φ a G B finSupp 0 L a f H f Base L
206 16 17 195 204 205 ringcld φ a G B finSupp 0 L a f H g H if g B a g 0 L f L f Base L
207 16 18 165 166 192 194 206 153 gsummptres2 φ a G B finSupp 0 L a L f H g H if g B a g 0 L f L f = L f a supp 0 L g H if g B a g 0 L f L f
208 113 adantr φ a G B finSupp 0 L a B LBasis subringAlg J F
209 126 ad2antrr φ a G B finSupp 0 L a v B supp 0 L a a Fn B
210 208 adantr φ a G B finSupp 0 L a v B supp 0 L a B LBasis subringAlg J F
211 fvexd φ a G B finSupp 0 L a v B supp 0 L a 0 L V
212 simpr φ a G B finSupp 0 L a v B supp 0 L a v B supp 0 L a
213 209 210 211 212 fvdifsupp φ a G B finSupp 0 L a v B supp 0 L a a v = 0 L
214 213 oveq1d φ a G B finSupp 0 L a v B supp 0 L a a v L v = 0 L L v
215 35 ad3antrrr φ a G B finSupp 0 L a v B supp 0 L a L Ring
216 81 ad2antrr φ a G B finSupp 0 L a B Base L
217 216 ssdifssd φ a G B finSupp 0 L a B supp 0 L a Base L
218 217 sselda φ a G B finSupp 0 L a v B supp 0 L a v Base L
219 16 17 18 215 218 ringlzd φ a G B finSupp 0 L a v B supp 0 L a 0 L L v = 0 L
220 214 219 eqtrd φ a G B finSupp 0 L a v B supp 0 L a a v L v = 0 L
221 35 ad3antrrr φ a G B finSupp 0 L a v B L Ring
222 26 ad3antrrr φ a G B finSupp 0 L a v B G Base L
223 116 adantr φ a G B finSupp 0 L a a : B G
224 223 ffvelcdmda φ a G B finSupp 0 L a v B a v G
225 222 224 sseldd φ a G B finSupp 0 L a v B a v Base L
226 216 sselda φ a G B finSupp 0 L a v B v Base L
227 16 17 221 225 226 ringcld φ a G B finSupp 0 L a v B a v L v Base L
228 16 18 165 208 220 194 227 144 gsummptres2 φ a G B finSupp 0 L a L v B a v L v = L v a supp 0 L a v L v
229 164 207 228 3eqtr4d φ a G B finSupp 0 L a L f H g H if g B a g 0 L f L f = L v B a v L v
230 229 eqeq2d φ a G B finSupp 0 L a x = L f H g H if g B a g 0 L f L f x = L v B a v L v
231 230 biimpar φ a G B finSupp 0 L a x = L v B a v L v x = L f H g H if g B a g 0 L f L f
232 231 anasss φ a G B finSupp 0 L a x = L v B a v L v x = L f H g H if g B a g 0 L f L f
233 138 232 jca φ a G B finSupp 0 L a x = L v B a v L v finSupp 0 L g H if g B a g 0 L x = L f H g H if g B a g 0 L f L f
234 110 122 233 rspcedvdw φ a G B finSupp 0 L a x = L v B a v L v p G H finSupp 0 L p x = L f H p f L f
235 234 r19.29an φ a G B finSupp 0 L a x = L v B a v L v p G H finSupp 0 L p x = L f H p f L f
236 103 235 impbida φ p G H finSupp 0 L p x = L f H p f L f a G B finSupp 0 L a x = L v B a v L v
237 59 84 236 3bitr4rd φ p G H finSupp 0 L p x = L f H p f L f x LSpan subringAlg L G B
238 15 24 237 3bitrd φ x C x LSpan subringAlg L G B
239 238 eqrdv φ C = LSpan subringAlg L G B