Metamath Proof Explorer


Theorem fourierdlem32

Description: Limit of a continuous function on an open subinterval. Lower bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem32.a φA
fourierdlem32.b φB
fourierdlem32.altb φA<B
fourierdlem32.f φF:ABcn
fourierdlem32.l φRFlimA
fourierdlem32.c φC
fourierdlem32.d φD
fourierdlem32.cltd φC<D
fourierdlem32.ss φCDAB
fourierdlem32.y Y=ifC=ARFC
fourierdlem32.j J=TopOpenfld𝑡AB
Assertion fourierdlem32 φYFCDlimC

Proof

Step Hyp Ref Expression
1 fourierdlem32.a φA
2 fourierdlem32.b φB
3 fourierdlem32.altb φA<B
4 fourierdlem32.f φF:ABcn
5 fourierdlem32.l φRFlimA
6 fourierdlem32.c φC
7 fourierdlem32.d φD
8 fourierdlem32.cltd φC<D
9 fourierdlem32.ss φCDAB
10 fourierdlem32.y Y=ifC=ARFC
11 fourierdlem32.j J=TopOpenfld𝑡AB
12 5 adantr φC=ARFlimA
13 iftrue C=AifC=ARFC=R
14 10 13 eqtr2id C=AR=Y
15 14 adantl φC=AR=Y
16 oveq2 C=AFCDlimC=FCDlimA
17 16 adantl φC=AFCDlimC=FCDlimA
18 cncff F:ABcnF:AB
19 4 18 syl φF:AB
20 19 adantr φC=AF:AB
21 9 adantr φC=ACDAB
22 ioosscn AB
23 22 a1i φC=AAB
24 eqid TopOpenfld=TopOpenfld
25 eqid TopOpenfld𝑡ABA=TopOpenfld𝑡ABA
26 6 leidd φCC
27 7 rexrd φD*
28 elico2 CD*CCDCCCC<D
29 6 27 28 syl2anc φCCDCCCC<D
30 6 26 8 29 mpbir3and φCCD
31 30 adantr φC=ACCD
32 24 cnfldtop TopOpenfldTop
33 ovex ABV
34 33 a1i φC=AABV
35 resttop TopOpenfldTopABVTopOpenfld𝑡ABTop
36 32 34 35 sylancr φC=ATopOpenfld𝑡ABTop
37 11 36 eqeltrid φC=AJTop
38 mnfxr −∞*
39 38 a1i φxAD−∞*
40 27 adantr φxADD*
41 simpr φxADxAD
42 1 adantr φxADA
43 elico2 AD*xADxAxx<D
44 42 40 43 syl2anc φxADxADxAxx<D
45 41 44 mpbid φxADxAxx<D
46 45 simp1d φxADx
47 46 mnfltd φxAD−∞<x
48 45 simp3d φxADx<D
49 39 40 46 47 48 eliood φxADx−∞D
50 45 simp2d φxADAx
51 7 adantr φxADD
52 2 adantr φxADB
53 1 2 6 7 8 9 fourierdlem10 φACDB
54 53 simprd φDB
55 54 adantr φxADDB
56 46 51 52 48 55 ltletrd φxADx<B
57 2 rexrd φB*
58 57 adantr φxADB*
59 elico2 AB*xABxAxx<B
60 42 58 59 syl2anc φxADxABxAxx<B
61 46 50 56 60 mpbir3and φxADxAB
62 49 61 elind φxADx−∞DAB
63 elinel1 x−∞DABx−∞D
64 elioore x−∞Dx
65 63 64 syl x−∞DABx
66 65 adantl φx−∞DABx
67 elinel2 x−∞DABxAB
68 67 adantl φx−∞DABxAB
69 1 adantr φx−∞DABA
70 57 adantr φx−∞DABB*
71 69 70 59 syl2anc φx−∞DABxABxAxx<B
72 68 71 mpbid φx−∞DABxAxx<B
73 72 simp2d φx−∞DABAx
74 63 adantl φx−∞DABx−∞D
75 27 adantr φx−∞DABD*
76 elioo2 −∞*D*x−∞Dx−∞<xx<D
77 38 75 76 sylancr φx−∞DABx−∞Dx−∞<xx<D
78 74 77 mpbid φx−∞DABx−∞<xx<D
79 78 simp3d φx−∞DABx<D
80 69 75 43 syl2anc φx−∞DABxADxAxx<D
81 66 73 79 80 mpbir3and φx−∞DABxAD
82 62 81 impbida φxADx−∞DAB
83 82 eqrdv φAD=−∞DAB
84 retop topGenran.Top
85 84 a1i φtopGenran.Top
86 33 a1i φABV
87 iooretop −∞DtopGenran.
88 87 a1i φ−∞DtopGenran.
89 elrestr topGenran.TopABV−∞DtopGenran.−∞DABtopGenran.𝑡AB
90 85 86 88 89 syl3anc φ−∞DABtopGenran.𝑡AB
91 83 90 eqeltrd φADtopGenran.𝑡AB
92 91 adantr φC=AADtopGenran.𝑡AB
93 simpr φC=AC=A
94 93 oveq1d φC=ACD=AD
95 11 a1i φJ=TopOpenfld𝑡AB
96 32 a1i φTopOpenfldTop
97 icossre AB*AB
98 1 57 97 syl2anc φAB
99 reex V
100 99 a1i φV
101 restabs TopOpenfldTopABVTopOpenfld𝑡𝑡AB=TopOpenfld𝑡AB
102 96 98 100 101 syl3anc φTopOpenfld𝑡𝑡AB=TopOpenfld𝑡AB
103 24 tgioo2 topGenran.=TopOpenfld𝑡
104 103 eqcomi TopOpenfld𝑡=topGenran.
105 104 oveq1i TopOpenfld𝑡𝑡AB=topGenran.𝑡AB
106 105 a1i φTopOpenfld𝑡𝑡AB=topGenran.𝑡AB
107 95 102 106 3eqtr2d φJ=topGenran.𝑡AB
108 107 adantr φC=AJ=topGenran.𝑡AB
109 92 94 108 3eltr4d φC=ACDJ
110 isopn3i JTopCDJintJCD=CD
111 37 109 110 syl2anc φC=AintJCD=CD
112 31 111 eleqtrrd φC=ACintJCD
113 id C=AC=A
114 113 eqcomd C=AA=C
115 114 adantl φC=AA=C
116 uncom ABA=AAB
117 1 rexrd φA*
118 snunioo A*B*A<BAAB=AB
119 117 57 3 118 syl3anc φAAB=AB
120 116 119 eqtrid φABA=AB
121 120 adantr φC=AABA=AB
122 121 oveq2d φC=ATopOpenfld𝑡ABA=TopOpenfld𝑡AB
123 122 11 eqtr4di φC=ATopOpenfld𝑡ABA=J
124 123 fveq2d φC=AintTopOpenfld𝑡ABA=intJ
125 uncom CDA=ACD
126 sneq C=AC=A
127 126 eqcomd C=AA=C
128 127 uneq1d C=AACD=CCD
129 125 128 eqtrid C=ACDA=CCD
130 6 rexrd φC*
131 snunioo C*D*C<DCCD=CD
132 130 27 8 131 syl3anc φCCD=CD
133 129 132 sylan9eqr φC=ACDA=CD
134 124 133 fveq12d φC=AintTopOpenfld𝑡ABACDA=intJCD
135 112 115 134 3eltr4d φC=AAintTopOpenfld𝑡ABACDA
136 20 21 23 24 25 135 limcres φC=AFCDlimA=FlimA
137 17 136 eqtr2d φC=AFlimA=FCDlimC
138 12 15 137 3eltr3d φC=AYFCDlimC
139 limcresi FlimCFCDlimC
140 iffalse ¬C=AifC=ARFC=FC
141 10 140 eqtrid ¬C=AY=FC
142 141 adantl φ¬C=AY=FC
143 ssid
144 143 a1i φ
145 eqid TopOpenfld𝑡AB=TopOpenfld𝑡AB
146 unicntop =TopOpenfld
147 146 restid TopOpenfldTopTopOpenfld𝑡=TopOpenfld
148 32 147 ax-mp TopOpenfld𝑡=TopOpenfld
149 148 eqcomi TopOpenfld=TopOpenfld𝑡
150 24 145 149 cncfcn ABABcn=TopOpenfld𝑡ABCnTopOpenfld
151 22 144 150 sylancr φABcn=TopOpenfld𝑡ABCnTopOpenfld
152 4 151 eleqtrd φFTopOpenfld𝑡ABCnTopOpenfld
153 24 cnfldtopon TopOpenfldTopOn
154 resttopon TopOpenfldTopOnABTopOpenfld𝑡ABTopOnAB
155 153 22 154 mp2an TopOpenfld𝑡ABTopOnAB
156 cncnp TopOpenfld𝑡ABTopOnABTopOpenfldTopOnFTopOpenfld𝑡ABCnTopOpenfldF:ABxABFTopOpenfld𝑡ABCnPTopOpenfldx
157 155 153 156 mp2an FTopOpenfld𝑡ABCnTopOpenfldF:ABxABFTopOpenfld𝑡ABCnPTopOpenfldx
158 152 157 sylib φF:ABxABFTopOpenfld𝑡ABCnPTopOpenfldx
159 158 simprd φxABFTopOpenfld𝑡ABCnPTopOpenfldx
160 159 adantr φ¬C=AxABFTopOpenfld𝑡ABCnPTopOpenfldx
161 117 adantr φ¬C=AA*
162 57 adantr φ¬C=AB*
163 6 adantr φ¬C=AC
164 1 adantr φ¬C=AA
165 53 simpld φAC
166 165 adantr φ¬C=AAC
167 113 eqcoms A=CC=A
168 167 necon3bi ¬C=AAC
169 168 adantl φ¬C=AAC
170 169 necomd φ¬C=ACA
171 164 163 166 170 leneltd φ¬C=AA<C
172 6 7 2 8 54 ltletrd φC<B
173 172 adantr φ¬C=AC<B
174 161 162 163 171 173 eliood φ¬C=ACAB
175 fveq2 x=CTopOpenfld𝑡ABCnPTopOpenfldx=TopOpenfld𝑡ABCnPTopOpenfldC
176 175 eleq2d x=CFTopOpenfld𝑡ABCnPTopOpenfldxFTopOpenfld𝑡ABCnPTopOpenfldC
177 176 rspccva xABFTopOpenfld𝑡ABCnPTopOpenfldxCABFTopOpenfld𝑡ABCnPTopOpenfldC
178 160 174 177 syl2anc φ¬C=AFTopOpenfld𝑡ABCnPTopOpenfldC
179 24 145 cnplimc ABCABFTopOpenfld𝑡ABCnPTopOpenfldCF:ABFCFlimC
180 22 174 179 sylancr φ¬C=AFTopOpenfld𝑡ABCnPTopOpenfldCF:ABFCFlimC
181 178 180 mpbid φ¬C=AF:ABFCFlimC
182 181 simprd φ¬C=AFCFlimC
183 142 182 eqeltrd φ¬C=AYFlimC
184 139 183 sselid φ¬C=AYFCDlimC
185 138 184 pm2.61dan φYFCDlimC