Metamath Proof Explorer


Theorem gg-dvfsumle

Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016) Use mpomulcn instead of mulcn as direct dependency. (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-dvfsumle.m φNM
gg-dvfsumle.a φxMNA:MNcn
gg-dvfsumle.v φxMNBV
gg-dvfsumle.b φdxMNAdx=xMNB
gg-dvfsumle.c x=MA=C
gg-dvfsumle.d x=NA=D
gg-dvfsumle.x φkM..^NX
gg-dvfsumle.l φkM..^Nxkk+1XB
Assertion gg-dvfsumle φkM..^NXDC

Proof

Step Hyp Ref Expression
1 gg-dvfsumle.m φNM
2 gg-dvfsumle.a φxMNA:MNcn
3 gg-dvfsumle.v φxMNBV
4 gg-dvfsumle.b φdxMNAdx=xMNB
5 gg-dvfsumle.c x=MA=C
6 gg-dvfsumle.d x=NA=D
7 gg-dvfsumle.x φkM..^NX
8 gg-dvfsumle.l φkM..^Nxkk+1XB
9 fzofi M..^NFin
10 9 a1i φM..^NFin
11 eluzel2 NMM
12 1 11 syl φM
13 eluzelz NMN
14 1 13 syl φN
15 fzval2 MNMN=MN
16 12 14 15 syl2anc φMN=MN
17 inss1 MNMN
18 16 17 eqsstrdi φMNMN
19 18 sselda φyMNyMN
20 cncff xMNA:MNcnxMNA:MN
21 2 20 syl φxMNA:MN
22 eqid xMNA=xMNA
23 22 fmpt xMNAxMNA:MN
24 21 23 sylibr φxMNA
25 nfcsb1v _xy/xA
26 25 nfel1 xy/xA
27 csbeq1a x=yA=y/xA
28 27 eleq1d x=yAy/xA
29 26 28 rspc yMNxMNAy/xA
30 24 29 mpan9 φyMNy/xA
31 19 30 syldan φyMNy/xA
32 31 ralrimiva φyMNy/xA
33 fzofzp1 kM..^Nk+1MN
34 csbeq1 y=k+1y/xA=k+1/xA
35 34 eleq1d y=k+1y/xAk+1/xA
36 35 rspccva yMNy/xAk+1MNk+1/xA
37 32 33 36 syl2an φkM..^Nk+1/xA
38 elfzofz kM..^NkMN
39 csbeq1 y=ky/xA=k/xA
40 39 eleq1d y=ky/xAk/xA
41 40 rspccva yMNy/xAkMNk/xA
42 32 38 41 syl2an φkM..^Nk/xA
43 37 42 resubcld φkM..^Nk+1/xAk/xA
44 elfzoelz kM..^Nk
45 44 adantl φkM..^Nk
46 45 zred φkM..^Nk
47 46 recnd φkM..^Nk
48 ax-1cn 1
49 pncan2 k1k+1-k=1
50 47 48 49 sylancl φkM..^Nk+1-k=1
51 50 oveq2d φkM..^NXk+1-k=X1
52 7 recnd φkM..^NX
53 peano2re kk+1
54 46 53 syl φkM..^Nk+1
55 54 recnd φkM..^Nk+1
56 52 55 47 subdid φkM..^NXk+1-k=Xk+1Xk
57 52 mulridd φkM..^NX1=X
58 51 56 57 3eqtr3d φkM..^NXk+1Xk=X
59 52 adantr φkM..^Nykk+1X
60 46 54 iccssred φkM..^Nkk+1
61 ax-resscn
62 60 61 sstrdi φkM..^Nkk+1
63 62 sselda φkM..^Nykk+1y
64 ovmul XyXu,vuvy=Xy
65 59 63 64 syl2anc φkM..^Nykk+1Xu,vuvy=Xy
66 65 eqeq2d φkM..^Nykk+1z=Xu,vuvyz=Xy
67 66 pm5.32da φkM..^Nykk+1z=Xu,vuvyykk+1z=Xy
68 67 opabbidv φkM..^Nyz|ykk+1z=Xu,vuvy=yz|ykk+1z=Xy
69 df-mpt ykk+1Xy=yz|ykk+1z=Xy
70 68 69 eqtr4di φkM..^Nyz|ykk+1z=Xu,vuvy=ykk+1Xy
71 df-mpt ykk+1Xu,vuvy=yz|ykk+1z=Xu,vuvy
72 eqid TopOpenfld=TopOpenfld
73 72 mpomulcn u,vuvTopOpenfld×tTopOpenfldCnTopOpenfld
74 61 a1i φkM..^N
75 cncfmptc Xkk+1ykk+1X:kk+1cn
76 7 62 74 75 syl3anc φkM..^Nykk+1X:kk+1cn
77 cncfmptid kk+1ykk+1y:kk+1cn
78 60 61 77 sylancl φkM..^Nykk+1y:kk+1cn
79 simpl XyX
80 79 recnd XyX
81 simpr Xyy
82 81 recnd Xyy
83 64 eqcomd XyXy=Xu,vuvy
84 80 82 83 syl2anc XyXy=Xu,vuvy
85 remulcl XyXy
86 84 85 eqeltrrd XyXu,vuvy
87 72 73 76 78 61 86 cncfmpt2ss φkM..^Nykk+1Xu,vuvy:kk+1cn
88 71 87 eqeltrrid φkM..^Nyz|ykk+1z=Xu,vuvy:kk+1cn
89 70 88 eqeltrrd φkM..^Nykk+1Xy:kk+1cn
90 reelprrecn
91 90 a1i φkM..^N
92 12 zred φM
93 92 adantr φkM..^NM
94 93 rexrd φkM..^NM*
95 elfzole1 kM..^NMk
96 95 adantl φkM..^NMk
97 iooss1 M*Mkkk+1Mk+1
98 94 96 97 syl2anc φkM..^Nkk+1Mk+1
99 14 zred φN
100 99 adantr φkM..^NN
101 100 rexrd φkM..^NN*
102 33 adantl φkM..^Nk+1MN
103 elfzle2 k+1MNk+1N
104 102 103 syl φkM..^Nk+1N
105 iooss2 N*k+1NMk+1MN
106 101 104 105 syl2anc φkM..^NMk+1MN
107 98 106 sstrd φkM..^Nkk+1MN
108 ioossicc MNMN
109 92 99 iccssred φMN
110 109 adantr φkM..^NMN
111 110 61 sstrdi φkM..^NMN
112 108 111 sstrid φkM..^NMN
113 107 112 sstrd φkM..^Nkk+1
114 113 sselda φkM..^Nykk+1y
115 1cnd φkM..^Nykk+11
116 74 sselda φkM..^Nyy
117 1cnd φkM..^Ny1
118 91 dvmptid φkM..^Ndyydy=y1
119 ioossre kk+1
120 119 a1i φkM..^Nkk+1
121 72 tgioo2 topGenran.=TopOpenfld𝑡
122 iooretop kk+1topGenran.
123 122 a1i φkM..^Nkk+1topGenran.
124 91 116 117 118 120 121 72 123 dvmptres φkM..^Ndykk+1ydy=ykk+11
125 91 114 115 124 52 dvmptcmul φkM..^Ndykk+1Xydy=ykk+1X1
126 57 mpteq2dv φkM..^Nykk+1X1=ykk+1X
127 125 126 eqtrd φkM..^Ndykk+1Xydy=ykk+1X
128 nfcv _yA
129 128 25 27 cbvmpt xkk+1A=ykk+1y/xA
130 iccss MNMkk+1Nkk+1MN
131 93 100 96 104 130 syl22anc φkM..^Nkk+1MN
132 131 resmptd φkM..^NxMNAkk+1=xkk+1A
133 2 adantr φkM..^NxMNA:MNcn
134 rescncf kk+1MNxMNA:MNcnxMNAkk+1:kk+1cn
135 131 133 134 sylc φkM..^NxMNAkk+1:kk+1cn
136 132 135 eqeltrrd φkM..^Nxkk+1A:kk+1cn
137 129 136 eqeltrrid φkM..^Nykk+1y/xA:kk+1cn
138 21 adantr φkM..^NxMNA:MN
139 138 23 sylibr φkM..^NxMNA
140 108 sseli yMNyMN
141 29 impcom xMNAyMNy/xA
142 139 140 141 syl2an φkM..^NyMNy/xA
143 142 recnd φkM..^NyMNy/xA
144 108 sseli xMNxMN
145 21 fvmptelcdm φxMNA
146 145 adantlr φkM..^NxMNA
147 144 146 sylan2 φkM..^NxMNA
148 147 fmpttd φkM..^NxMNA:MN
149 ioossre MN
150 dvfre xMNA:MNMNdxMNAdx:domdxMNAdx
151 148 149 150 sylancl φkM..^NdxMNAdx:domdxMNAdx
152 4 adantr φkM..^NdxMNAdx=xMNB
153 152 dmeqd φkM..^NdomdxMNAdx=domxMNB
154 3 adantlr φkM..^NxMNBV
155 154 ralrimiva φkM..^NxMNBV
156 dmmptg xMNBVdomxMNB=MN
157 155 156 syl φkM..^NdomxMNB=MN
158 153 157 eqtrd φkM..^NdomdxMNAdx=MN
159 152 158 feq12d φkM..^NdxMNAdx:domdxMNAdxxMNB:MN
160 151 159 mpbid φkM..^NxMNB:MN
161 eqid xMNB=xMNB
162 161 fmpt xMNBxMNB:MN
163 160 162 sylibr φkM..^NxMNB
164 nfcsb1v _xy/xB
165 164 nfel1 xy/xB
166 csbeq1a x=yB=y/xB
167 166 eleq1d x=yBy/xB
168 165 167 rspc yMNxMNBy/xB
169 163 168 mpan9 φkM..^NyMNy/xB
170 128 25 27 cbvmpt xMNA=yMNy/xA
171 170 oveq2i dxMNAdx=dyMNy/xAdy
172 nfcv _yB
173 172 164 166 cbvmpt xMNB=yMNy/xB
174 152 171 173 3eqtr3g φkM..^NdyMNy/xAdy=yMNy/xB
175 91 143 169 174 107 121 72 123 dvmptres φkM..^Ndykk+1y/xAdy=ykk+1y/xB
176 8 anassrs φkM..^Nxkk+1XB
177 176 ralrimiva φkM..^Nxkk+1XB
178 nfcv _xX
179 nfcv _x
180 178 179 164 nfbr xXy/xB
181 166 breq2d x=yXBXy/xB
182 180 181 rspc ykk+1xkk+1XBXy/xB
183 177 182 mpan9 φkM..^Nykk+1Xy/xB
184 46 rexrd φkM..^Nk*
185 54 rexrd φkM..^Nk+1*
186 46 lep1d φkM..^Nkk+1
187 lbicc2 k*k+1*kk+1kkk+1
188 184 185 186 187 syl3anc φkM..^Nkkk+1
189 ubicc2 k*k+1*kk+1k+1kk+1
190 184 185 186 189 syl3anc φkM..^Nk+1kk+1
191 oveq2 y=kXy=Xk
192 oveq2 y=k+1Xy=Xk+1
193 46 54 89 127 137 175 183 188 190 186 191 39 192 34 dvle φkM..^NXk+1Xkk+1/xAk/xA
194 58 193 eqbrtrrd φkM..^NXk+1/xAk/xA
195 10 7 43 194 fsumle φkM..^NXkM..^Nk+1/xAk/xA
196 vex yV
197 196 a1i y=MyV
198 eqeq2 y=Mx=yx=M
199 198 biimpa y=Mx=yx=M
200 199 5 syl y=Mx=yA=C
201 197 200 csbied y=My/xA=C
202 196 a1i y=NyV
203 eqeq2 y=Nx=yx=N
204 203 biimpa y=Nx=yx=N
205 204 6 syl y=Nx=yA=D
206 202 205 csbied y=Ny/xA=D
207 31 recnd φyMNy/xA
208 39 34 201 206 1 207 telfsumo2 φkM..^Nk+1/xAk/xA=DC
209 195 208 breqtrd φkM..^NXDC