Metamath Proof Explorer


Theorem hasheuni

Description: The cardinality of a disjoint union, not necessarily finite. cf. hashuni . (Contributed by Thierry Arnoux, 19-Nov-2016) (Revised by Thierry Arnoux, 2-Jan-2017) (Revised by Thierry Arnoux, 20-Jun-2017)

Ref Expression
Assertion hasheuni AVDisjxAxA=*xAx

Proof

Step Hyp Ref Expression
1 nfdisj1 xDisjxAx
2 nfv xAFin
3 nfv xAFin
4 1 2 3 nf3an xDisjxAxAFinAFin
5 simp2 DisjxAxAFinAFinAFin
6 simp3 DisjxAxAFinAFinAFin
7 simp1 DisjxAxAFinAFinDisjxAx
8 4 5 6 7 hashunif DisjxAxAFinAFinA=xAx
9 simpl AFinAFinAFin
10 dfss3 AFinxAxFin
11 hashcl xFinx0
12 nn0re x0x
13 nn0ge0 x00x
14 elrege0 x0+∞x0x
15 12 13 14 sylanbrc x0x0+∞
16 11 15 syl xFinx0+∞
17 16 ralimi xAxFinxAx0+∞
18 10 17 sylbi AFinxAx0+∞
19 18 r19.21bi AFinxAx0+∞
20 19 adantll AFinAFinxAx0+∞
21 9 20 esumpfinval AFinAFin*xAx=xAx
22 21 3adant1 DisjxAxAFinAFin*xAx=xAx
23 8 22 eqtr4d DisjxAxAFinAFinA=*xAx
24 23 3adant1l AVDisjxAxAFinAFinA=*xAx
25 24 3expa AVDisjxAxAFinAFinA=*xAx
26 uniexg AVAV
27 10 notbii ¬AFin¬xAxFin
28 rexnal xA¬xFin¬xAxFin
29 27 28 bitr4i ¬AFinxA¬xFin
30 elssuni xAxA
31 ssfi AFinxAxFin
32 31 expcom xAAFinxFin
33 32 con3d xA¬xFin¬AFin
34 30 33 syl xA¬xFin¬AFin
35 34 rexlimiv xA¬xFin¬AFin
36 29 35 sylbi ¬AFin¬AFin
37 hashinf AV¬AFinA=+∞
38 26 36 37 syl2an AV¬AFinA=+∞
39 vex xV
40 hashinf xV¬xFinx=+∞
41 39 40 mpan ¬xFinx=+∞
42 41 reximi xA¬xFinxAx=+∞
43 29 42 sylbi ¬AFinxAx=+∞
44 nfv xAV
45 nfre1 xxAx=+∞
46 44 45 nfan xAVxAx=+∞
47 simpl AVxAx=+∞AV
48 hashf2 .:V0+∞
49 ffvelcdm .:V0+∞xVx0+∞
50 48 39 49 mp2an x0+∞
51 50 a1i AVxAx=+∞xAx0+∞
52 simpr AVxAx=+∞xAx=+∞
53 46 47 51 52 esumpinfval AVxAx=+∞*xAx=+∞
54 43 53 sylan2 AV¬AFin*xAx=+∞
55 38 54 eqtr4d AV¬AFinA=*xAx
56 55 3adant2 AVAFin¬AFinA=*xAx
57 56 3adant1r AVDisjxAxAFin¬AFinA=*xAx
58 57 3expa AVDisjxAxAFin¬AFinA=*xAx
59 25 58 pm2.61dan AVDisjxAxAFinA=*xAx
60 pwfi AFin𝒫AFin
61 pwuni A𝒫A
62 ssfi 𝒫AFinA𝒫AAFin
63 61 62 mpan2 𝒫AFinAFin
64 60 63 sylbi AFinAFin
65 64 con3i ¬AFin¬AFin
66 26 65 37 syl2an AV¬AFinA=+∞
67 nftru x
68 unrab xA|x=0xA|¬x=0=xA|x=0¬x=0
69 exmid x=0¬x=0
70 69 rgenw xAx=0¬x=0
71 rabid2 A=xA|x=0¬x=0xAx=0¬x=0
72 70 71 mpbir A=xA|x=0¬x=0
73 68 72 eqtr4i xA|x=0xA|¬x=0=A
74 73 a1i xA|x=0xA|¬x=0=A
75 67 74 esumeq1d *xxA|x=0xA|¬x=0x=*xAx
76 75 mptru *xxA|x=0xA|¬x=0x=*xAx
77 nfrab1 _xxA|x=0
78 nfrab1 _xxA|¬x=0
79 rabexg AVxA|x=0V
80 rabexg AVxA|¬x=0V
81 rabnc xA|x=0xA|¬x=0=
82 81 a1i AVxA|x=0xA|¬x=0=
83 50 a1i AVxxA|x=0x0+∞
84 50 a1i AVxxA|¬x=0x0+∞
85 44 77 78 79 80 82 83 84 esumsplit AV*xxA|x=0xA|¬x=0x=*xxA|x=0x+𝑒*xxA|¬x=0x
86 76 85 eqtr3id AV*xAx=*xxA|x=0x+𝑒*xxA|¬x=0x
87 86 adantr AV¬AFin*xAx=*xxA|x=0x+𝑒*xxA|¬x=0x
88 nfv xAV¬AFin
89 80 adantr AV¬AFinxA|¬x=0V
90 simpr AV¬AFin¬AFin
91 dfrab3 xA|x=0=Ax|x=0
92 hasheq0 xVx=0x=
93 39 92 ax-mp x=0x=
94 93 abbii x|x=0=x|x=
95 df-sn =x|x=
96 94 95 eqtr4i x|x=0=
97 96 ineq2i Ax|x=0=A
98 91 97 eqtri xA|x=0=A
99 snfi Fin
100 inss2 A
101 ssfi FinAAFin
102 99 100 101 mp2an AFin
103 98 102 eqeltri xA|x=0Fin
104 103 a1i AV¬AFinxA|x=0Fin
105 difinf ¬AFinxA|x=0Fin¬AxA|x=0Fin
106 90 104 105 syl2anc AV¬AFin¬AxA|x=0Fin
107 notrab AxA|x=0=xA|¬x=0
108 107 eleq1i AxA|x=0FinxA|¬x=0Fin
109 106 108 sylnib AV¬AFin¬xA|¬x=0Fin
110 50 a1i AV¬AFinxxA|¬x=0x0+∞
111 39 a1i AV¬AFinxxA|¬x=0xV
112 simpr AV¬AFinxxA|¬x=0xxA|¬x=0
113 rabid xxA|¬x=0xA¬x=0
114 112 113 sylib AV¬AFinxxA|¬x=0xA¬x=0
115 114 simprd AV¬AFinxxA|¬x=0¬x=0
116 93 biimpri x=x=0
117 116 necon3bi ¬x=0x
118 115 117 syl AV¬AFinxxA|¬x=0x
119 hashge1 xVx1x
120 111 118 119 syl2anc AV¬AFinxxA|¬x=01x
121 1xr 1*
122 121 a1i AV¬AFin1*
123 0lt1 0<1
124 123 a1i AV¬AFin0<1
125 88 78 89 109 110 120 122 124 esumpinfsum AV¬AFin*xxA|¬x=0x=+∞
126 125 oveq2d AV¬AFin*xxA|x=0x+𝑒*xxA|¬x=0x=*xxA|x=0x+𝑒+∞
127 iccssxr 0+∞*
128 79 adantr AV¬AFinxA|x=0V
129 50 a1i AV¬AFinxxA|x=0x0+∞
130 129 ralrimiva AV¬AFinxxA|x=0x0+∞
131 77 esumcl xA|x=0VxxA|x=0x0+∞*xxA|x=0x0+∞
132 128 130 131 syl2anc AV¬AFin*xxA|x=0x0+∞
133 127 132 sselid AV¬AFin*xxA|x=0x*
134 xrge0neqmnf *xxA|x=0x0+∞*xxA|x=0x−∞
135 132 134 syl AV¬AFin*xxA|x=0x−∞
136 xaddpnf1 *xxA|x=0x**xxA|x=0x−∞*xxA|x=0x+𝑒+∞=+∞
137 133 135 136 syl2anc AV¬AFin*xxA|x=0x+𝑒+∞=+∞
138 87 126 137 3eqtrd AV¬AFin*xAx=+∞
139 66 138 eqtr4d AV¬AFinA=*xAx
140 139 adantlr AVDisjxAx¬AFinA=*xAx
141 59 140 pm2.61dan AVDisjxAxA=*xAx