Metamath Proof Explorer


Theorem hbtlem2

Description: Leading coefficient ideals are ideals. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses hbtlem.p P=Poly1R
hbtlem.u U=LIdealP
hbtlem.s S=ldgIdlSeqR
hbtlem2.t T=LIdealR
Assertion hbtlem2 RRingIUX0SIXT

Proof

Step Hyp Ref Expression
1 hbtlem.p P=Poly1R
2 hbtlem.u U=LIdealP
3 hbtlem.s S=ldgIdlSeqR
4 hbtlem2.t T=LIdealR
5 eqid deg1R=deg1R
6 1 2 3 5 hbtlem1 RRingIUX0SIX=a|bIdeg1RbXa=coe1bX
7 eqid BaseP=BaseP
8 7 2 lidlss IUIBaseP
9 8 3ad2ant2 RRingIUX0IBaseP
10 9 sselda RRingIUX0bIbBaseP
11 eqid coe1b=coe1b
12 eqid BaseR=BaseR
13 11 7 1 12 coe1f bBasePcoe1b:0BaseR
14 10 13 syl RRingIUX0bIcoe1b:0BaseR
15 simpl3 RRingIUX0bIX0
16 14 15 ffvelcdmd RRingIUX0bIcoe1bXBaseR
17 eleq1a coe1bXBaseRa=coe1bXaBaseR
18 16 17 syl RRingIUX0bIa=coe1bXaBaseR
19 18 adantld RRingIUX0bIdeg1RbXa=coe1bXaBaseR
20 19 rexlimdva RRingIUX0bIdeg1RbXa=coe1bXaBaseR
21 20 abssdv RRingIUX0a|bIdeg1RbXa=coe1bXBaseR
22 1 ply1ring RRingPRing
23 22 3ad2ant1 RRingIUX0PRing
24 simp2 RRingIUX0IU
25 eqid 0P=0P
26 2 25 lidl0cl PRingIU0PI
27 23 24 26 syl2anc RRingIUX00PI
28 5 1 25 deg1z RRingdeg1R0P=−∞
29 28 3ad2ant1 RRingIUX0deg1R0P=−∞
30 nn0ssre 0
31 ressxr *
32 30 31 sstri 0*
33 simp3 RRingIUX0X0
34 32 33 sselid RRingIUX0X*
35 mnfle X*−∞X
36 34 35 syl RRingIUX0−∞X
37 29 36 eqbrtrd RRingIUX0deg1R0PX
38 eqid 0R=0R
39 1 25 38 coe1z RRingcoe10P=0×0R
40 39 3ad2ant1 RRingIUX0coe10P=0×0R
41 40 fveq1d RRingIUX0coe10PX=0×0RX
42 fvex 0RV
43 42 fvconst2 X00×0RX=0R
44 43 3ad2ant3 RRingIUX00×0RX=0R
45 41 44 eqtr2d RRingIUX00R=coe10PX
46 fveq2 b=0Pdeg1Rb=deg1R0P
47 46 breq1d b=0Pdeg1RbXdeg1R0PX
48 fveq2 b=0Pcoe1b=coe10P
49 48 fveq1d b=0Pcoe1bX=coe10PX
50 49 eqeq2d b=0P0R=coe1bX0R=coe10PX
51 47 50 anbi12d b=0Pdeg1RbX0R=coe1bXdeg1R0PX0R=coe10PX
52 51 rspcev 0PIdeg1R0PX0R=coe10PXbIdeg1RbX0R=coe1bX
53 27 37 45 52 syl12anc RRingIUX0bIdeg1RbX0R=coe1bX
54 eqeq1 a=0Ra=coe1bX0R=coe1bX
55 54 anbi2d a=0Rdeg1RbXa=coe1bXdeg1RbX0R=coe1bX
56 55 rexbidv a=0RbIdeg1RbXa=coe1bXbIdeg1RbX0R=coe1bX
57 42 56 elab 0Ra|bIdeg1RbXa=coe1bXbIdeg1RbX0R=coe1bX
58 53 57 sylibr RRingIUX00Ra|bIdeg1RbXa=coe1bX
59 58 ne0d RRingIUX0a|bIdeg1RbXa=coe1bX
60 23 adantr RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXPRing
61 simpl2 RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXIU
62 eqid algScP=algScP
63 1 62 12 7 ply1sclf RRingalgScP:BaseRBaseP
64 63 3ad2ant1 RRingIUX0algScP:BaseRBaseP
65 64 adantr RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXalgScP:BaseRBaseP
66 simprl RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXcBaseR
67 65 66 ffvelcdmd RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXalgScPcBaseP
68 simprll cBaseRfIdeg1RfXgIdeg1RgXfI
69 68 adantl RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXfI
70 eqid P=P
71 2 7 70 lidlmcl PRingIUalgScPcBasePfIalgScPcPfI
72 60 61 67 69 71 syl22anc RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXalgScPcPfI
73 simprrl cBaseRfIdeg1RfXgIdeg1RgXgI
74 73 adantl RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXgI
75 eqid +P=+P
76 2 75 lidlacl PRingIUalgScPcPfIgIalgScPcPf+PgI
77 60 61 72 74 76 syl22anc RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXalgScPcPf+PgI
78 simpl1 RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXRRing
79 9 adantr RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXIBaseP
80 79 69 sseldd RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXfBaseP
81 7 70 ringcl PRingalgScPcBasePfBasePalgScPcPfBaseP
82 60 67 80 81 syl3anc RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXalgScPcPfBaseP
83 79 74 sseldd RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXgBaseP
84 simpl3 RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXX0
85 32 84 sselid RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXX*
86 5 1 7 deg1xrcl algScPcPfBasePdeg1RalgScPcPf*
87 82 86 syl RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXdeg1RalgScPcPf*
88 5 1 7 deg1xrcl fBasePdeg1Rf*
89 80 88 syl RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXdeg1Rf*
90 5 1 12 7 70 62 deg1mul3le RRingcBaseRfBasePdeg1RalgScPcPfdeg1Rf
91 78 66 80 90 syl3anc RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXdeg1RalgScPcPfdeg1Rf
92 simprlr cBaseRfIdeg1RfXgIdeg1RgXdeg1RfX
93 92 adantl RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXdeg1RfX
94 87 89 85 91 93 xrletrd RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXdeg1RalgScPcPfX
95 simprrr cBaseRfIdeg1RfXgIdeg1RgXdeg1RgX
96 95 adantl RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXdeg1RgX
97 1 5 78 7 75 82 83 85 94 96 deg1addle2 RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXdeg1RalgScPcPf+PgX
98 eqid +R=+R
99 1 7 75 98 coe1addfv RRingalgScPcPfBasePgBasePX0coe1algScPcPf+PgX=coe1algScPcPfX+Rcoe1gX
100 78 82 83 84 99 syl31anc RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXcoe1algScPcPf+PgX=coe1algScPcPfX+Rcoe1gX
101 eqid R=R
102 1 7 12 62 70 101 coe1sclmulfv RRingcBaseRfBasePX0coe1algScPcPfX=cRcoe1fX
103 78 66 80 84 102 syl121anc RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXcoe1algScPcPfX=cRcoe1fX
104 103 oveq1d RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXcoe1algScPcPfX+Rcoe1gX=cRcoe1fX+Rcoe1gX
105 100 104 eqtr2d RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXcRcoe1fX+Rcoe1gX=coe1algScPcPf+PgX
106 fveq2 b=algScPcPf+Pgdeg1Rb=deg1RalgScPcPf+Pg
107 106 breq1d b=algScPcPf+Pgdeg1RbXdeg1RalgScPcPf+PgX
108 fveq2 b=algScPcPf+Pgcoe1b=coe1algScPcPf+Pg
109 108 fveq1d b=algScPcPf+Pgcoe1bX=coe1algScPcPf+PgX
110 109 eqeq2d b=algScPcPf+PgcRcoe1fX+Rcoe1gX=coe1bXcRcoe1fX+Rcoe1gX=coe1algScPcPf+PgX
111 107 110 anbi12d b=algScPcPf+Pgdeg1RbXcRcoe1fX+Rcoe1gX=coe1bXdeg1RalgScPcPf+PgXcRcoe1fX+Rcoe1gX=coe1algScPcPf+PgX
112 111 rspcev algScPcPf+PgIdeg1RalgScPcPf+PgXcRcoe1fX+Rcoe1gX=coe1algScPcPf+PgXbIdeg1RbXcRcoe1fX+Rcoe1gX=coe1bX
113 77 97 105 112 syl12anc RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXbIdeg1RbXcRcoe1fX+Rcoe1gX=coe1bX
114 ovex cRcoe1fX+Rcoe1gXV
115 eqeq1 a=cRcoe1fX+Rcoe1gXa=coe1bXcRcoe1fX+Rcoe1gX=coe1bX
116 115 anbi2d a=cRcoe1fX+Rcoe1gXdeg1RbXa=coe1bXdeg1RbXcRcoe1fX+Rcoe1gX=coe1bX
117 116 rexbidv a=cRcoe1fX+Rcoe1gXbIdeg1RbXa=coe1bXbIdeg1RbXcRcoe1fX+Rcoe1gX=coe1bX
118 114 117 elab cRcoe1fX+Rcoe1gXa|bIdeg1RbXa=coe1bXbIdeg1RbXcRcoe1fX+Rcoe1gX=coe1bX
119 113 118 sylibr RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXcRcoe1fX+Rcoe1gXa|bIdeg1RbXa=coe1bX
120 119 exp45 RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXcRcoe1fX+Rcoe1gXa|bIdeg1RbXa=coe1bX
121 120 imp RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXcRcoe1fX+Rcoe1gXa|bIdeg1RbXa=coe1bX
122 121 exp5c RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXcRcoe1fX+Rcoe1gXa|bIdeg1RbXa=coe1bX
123 122 imp RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXcRcoe1fX+Rcoe1gXa|bIdeg1RbXa=coe1bX
124 123 imp41 RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXcRcoe1fX+Rcoe1gXa|bIdeg1RbXa=coe1bX
125 oveq2 e=coe1gXcRcoe1fX+Re=cRcoe1fX+Rcoe1gX
126 125 eleq1d e=coe1gXcRcoe1fX+Rea|bIdeg1RbXa=coe1bXcRcoe1fX+Rcoe1gXa|bIdeg1RbXa=coe1bX
127 124 126 syl5ibrcom RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXe=coe1gXcRcoe1fX+Rea|bIdeg1RbXa=coe1bX
128 127 expimpd RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXe=coe1gXcRcoe1fX+Rea|bIdeg1RbXa=coe1bX
129 128 rexlimdva RRingIUX0cBaseRfIdeg1RfXgIdeg1RgXe=coe1gXcRcoe1fX+Rea|bIdeg1RbXa=coe1bX
130 129 alrimiv RRingIUX0cBaseRfIdeg1RfXegIdeg1RgXe=coe1gXcRcoe1fX+Rea|bIdeg1RbXa=coe1bX
131 eqeq1 a=ea=coe1bXe=coe1bX
132 131 anbi2d a=edeg1RbXa=coe1bXdeg1RbXe=coe1bX
133 132 rexbidv a=ebIdeg1RbXa=coe1bXbIdeg1RbXe=coe1bX
134 fveq2 b=gdeg1Rb=deg1Rg
135 134 breq1d b=gdeg1RbXdeg1RgX
136 fveq2 b=gcoe1b=coe1g
137 136 fveq1d b=gcoe1bX=coe1gX
138 137 eqeq2d b=ge=coe1bXe=coe1gX
139 135 138 anbi12d b=gdeg1RbXe=coe1bXdeg1RgXe=coe1gX
140 139 cbvrexvw bIdeg1RbXe=coe1bXgIdeg1RgXe=coe1gX
141 133 140 bitrdi a=ebIdeg1RbXa=coe1bXgIdeg1RgXe=coe1gX
142 141 ralab ea|bIdeg1RbXa=coe1bXcRcoe1fX+Rea|bIdeg1RbXa=coe1bXegIdeg1RgXe=coe1gXcRcoe1fX+Rea|bIdeg1RbXa=coe1bX
143 130 142 sylibr RRingIUX0cBaseRfIdeg1RfXea|bIdeg1RbXa=coe1bXcRcoe1fX+Rea|bIdeg1RbXa=coe1bX
144 oveq2 d=coe1fXcRd=cRcoe1fX
145 144 oveq1d d=coe1fXcRd+Re=cRcoe1fX+Re
146 145 eleq1d d=coe1fXcRd+Rea|bIdeg1RbXa=coe1bXcRcoe1fX+Rea|bIdeg1RbXa=coe1bX
147 146 ralbidv d=coe1fXea|bIdeg1RbXa=coe1bXcRd+Rea|bIdeg1RbXa=coe1bXea|bIdeg1RbXa=coe1bXcRcoe1fX+Rea|bIdeg1RbXa=coe1bX
148 143 147 syl5ibrcom RRingIUX0cBaseRfIdeg1RfXd=coe1fXea|bIdeg1RbXa=coe1bXcRd+Rea|bIdeg1RbXa=coe1bX
149 148 expimpd RRingIUX0cBaseRfIdeg1RfXd=coe1fXea|bIdeg1RbXa=coe1bXcRd+Rea|bIdeg1RbXa=coe1bX
150 149 rexlimdva RRingIUX0cBaseRfIdeg1RfXd=coe1fXea|bIdeg1RbXa=coe1bXcRd+Rea|bIdeg1RbXa=coe1bX
151 150 alrimiv RRingIUX0cBaseRdfIdeg1RfXd=coe1fXea|bIdeg1RbXa=coe1bXcRd+Rea|bIdeg1RbXa=coe1bX
152 eqeq1 a=da=coe1bXd=coe1bX
153 152 anbi2d a=ddeg1RbXa=coe1bXdeg1RbXd=coe1bX
154 153 rexbidv a=dbIdeg1RbXa=coe1bXbIdeg1RbXd=coe1bX
155 fveq2 b=fdeg1Rb=deg1Rf
156 155 breq1d b=fdeg1RbXdeg1RfX
157 fveq2 b=fcoe1b=coe1f
158 157 fveq1d b=fcoe1bX=coe1fX
159 158 eqeq2d b=fd=coe1bXd=coe1fX
160 156 159 anbi12d b=fdeg1RbXd=coe1bXdeg1RfXd=coe1fX
161 160 cbvrexvw bIdeg1RbXd=coe1bXfIdeg1RfXd=coe1fX
162 154 161 bitrdi a=dbIdeg1RbXa=coe1bXfIdeg1RfXd=coe1fX
163 162 ralab da|bIdeg1RbXa=coe1bXea|bIdeg1RbXa=coe1bXcRd+Rea|bIdeg1RbXa=coe1bXdfIdeg1RfXd=coe1fXea|bIdeg1RbXa=coe1bXcRd+Rea|bIdeg1RbXa=coe1bX
164 151 163 sylibr RRingIUX0cBaseRda|bIdeg1RbXa=coe1bXea|bIdeg1RbXa=coe1bXcRd+Rea|bIdeg1RbXa=coe1bX
165 164 ralrimiva RRingIUX0cBaseRda|bIdeg1RbXa=coe1bXea|bIdeg1RbXa=coe1bXcRd+Rea|bIdeg1RbXa=coe1bX
166 4 12 98 101 islidl a|bIdeg1RbXa=coe1bXTa|bIdeg1RbXa=coe1bXBaseRa|bIdeg1RbXa=coe1bXcBaseRda|bIdeg1RbXa=coe1bXea|bIdeg1RbXa=coe1bXcRd+Rea|bIdeg1RbXa=coe1bX
167 21 59 165 166 syl3anbrc RRingIUX0a|bIdeg1RbXa=coe1bXT
168 6 167 eqeltrd RRingIUX0SIXT