Metamath Proof Explorer


Theorem hoicvrrex

Description: Any subset of the multidimensional reals can be covered by a countable set of half-open intervals, see Definition 115A (b) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses hoicvrrex.fi φXFin
hoicvrrex.y φYX
Assertion hoicvrrex φi2XYjkX.ijk+∞=sum^jkXvol.ijk

Proof

Step Hyp Ref Expression
1 hoicvrrex.fi φXFin
2 hoicvrrex.y φYX
3 nnre jj
4 3 renegcld jj
5 opelxpi jjjj2
6 4 3 5 syl2anc jjj2
7 6 ad2antlr φjkXjj2
8 eqid kXjj=kXjj
9 7 8 fmptd φjkXjj:X2
10 reex V
11 10 10 xpex 2V
12 11 a1i φ2V
13 elmapg 2VXFinkXjj2XkXjj:X2
14 12 1 13 syl2anc φkXjj2XkXjj:X2
15 14 adantr φjkXjj2XkXjj:X2
16 9 15 mpbird φjkXjj2X
17 eqid jkXjj=jkXjj
18 16 17 fmptd φjkXjj:2X
19 ovex 2XV
20 nnex V
21 19 20 elmap jkXjj2XjkXjj:2X
22 18 21 sylibr φjkXjj2X
23 eqid jlXjj=jlXjj
24 23 1 hoicvr φXjkX.jlXjjjk
25 eqidd l=kjj=jj
26 25 cbvmptv lXjj=kXjj
27 26 mpteq2i jlXjj=jkXjj
28 27 a1i φjlXjj=jkXjj
29 28 fveq1d φjlXjjj=jkXjjj
30 29 coeq2d φ.jlXjjj=.jkXjjj
31 30 fveq1d φ.jlXjjjk=.jkXjjjk
32 31 ixpeq2dv φkX.jlXjjjk=kX.jkXjjjk
33 32 iuneq2d φjkX.jlXjjjk=jkX.jkXjjjk
34 24 33 sseqtrd φXjkX.jkXjjjk
35 2 34 sstrd φYjkX.jkXjjjk
36 simpr φjj
37 16 elexd φjkXjjV
38 17 fvmpt2 jkXjjVjkXjjj=kXjj
39 36 37 38 syl2anc φjjkXjjj=kXjj
40 39 7 fmpt3d φjjkXjjj:X2
41 40 adantr φjkXjkXjjj:X2
42 simpr φjkXkX
43 41 42 fvovco φjkX.jkXjjjk=1stjkXjjjk2ndjkXjjjk
44 39 fveq1d φjjkXjjjk=kXjjk
45 44 adantr φjkXjkXjjjk=kXjjk
46 simpr φkXkX
47 opex jjV
48 47 a1i φkXjjV
49 8 fvmpt2 kXjjVkXjjk=jj
50 46 48 49 syl2anc φkXkXjjk=jj
51 50 adantlr φjkXkXjjk=jj
52 45 51 eqtrd φjkXjkXjjjk=jj
53 52 fveq2d φjkX1stjkXjjjk=1stjj
54 negex jV
55 vex jV
56 54 55 op1st 1stjj=j
57 56 a1i φjkX1stjj=j
58 53 57 eqtrd φjkX1stjkXjjjk=j
59 52 fveq2d φjkX2ndjkXjjjk=2ndjj
60 54 55 op2nd 2ndjj=j
61 60 a1i φjkX2ndjj=j
62 59 61 eqtrd φjkX2ndjkXjjjk=j
63 58 62 oveq12d φjkX1stjkXjjjk2ndjkXjjjk=jj
64 43 63 eqtrd φjkX.jkXjjjk=jj
65 64 fveq2d φjkXvol.jkXjjjk=voljj
66 volico jjvoljj=ifj<jjj0
67 4 3 66 syl2anc jvoljj=ifj<jjj0
68 nnrp jj+
69 neglt j+j<j
70 68 69 syl jj<j
71 70 iftrued jifj<jjj0=jj
72 3 recnd jj
73 72 72 subnegd jjj=j+j
74 72 2timesd j2j=j+j
75 73 74 eqtr4d jjj=2j
76 67 71 75 3eqtrd jvoljj=2j
77 76 ad2antlr φjkXvoljj=2j
78 65 77 eqtrd φjkXvol.jkXjjjk=2j
79 78 prodeq2dv φjkXvol.jkXjjjk=kX2j
80 1 adantr φjXFin
81 2cnd φj2
82 72 adantl φjj
83 81 82 mulcld φj2j
84 fprodconst XFin2jkX2j=2jX
85 80 83 84 syl2anc φjkX2j=2jX
86 79 85 eqtrd φjkXvol.jkXjjjk=2jX
87 86 mpteq2dva φjkXvol.jkXjjjk=j2jX
88 87 fveq2d φsum^jkXvol.jkXjjjk=sum^j2jX
89 20 a1i φV
90 68 ssriv +
91 ioorp 0+∞=+
92 91 eqcomi +=0+∞
93 90 92 sseqtri 0+∞
94 ioossicc 0+∞0+∞
95 93 94 sstri 0+∞
96 2nn 2
97 96 a1i φj2
98 97 36 nnmulcld φj2j
99 hashcl XFinX0
100 1 99 syl φX0
101 100 adantr φjX0
102 nnexpcl 2jX02jX
103 98 101 102 syl2anc φj2jX
104 95 103 sselid φj2jX0+∞
105 eqid j2jX=j2jX
106 104 105 fmptd φj2jX:0+∞
107 89 106 sge0xrcl φsum^j2jX*
108 pnfxr +∞*
109 108 a1i φ+∞*
110 1nn 1
111 95 110 sselii 10+∞
112 111 a1i φj10+∞
113 eqid j1=j1
114 112 113 fmptd φj1:0+∞
115 89 114 sge0xrcl φsum^j1*
116 nnnfi ¬Fin
117 116 a1i φ¬Fin
118 1rp 1+
119 118 a1i φ1+
120 89 117 119 sge0rpcpnf φsum^j1=+∞
121 120 eqcomd φ+∞=sum^j1
122 109 121 xreqled φ+∞sum^j1
123 nfv jφ
124 114 fvmptelcdm φj10+∞
125 103 nnge1d φj12jX
126 123 89 124 104 125 sge0lempt φsum^j1sum^j2jX
127 109 115 107 122 126 xrletrd φ+∞sum^j2jX
128 107 127 xrgepnfd φsum^j2jX=+∞
129 eqidd φ+∞=+∞
130 88 128 129 3eqtrrd φ+∞=sum^jkXvol.jkXjjjk
131 35 130 jca φYjkX.jkXjjjk+∞=sum^jkXvol.jkXjjjk
132 nfcv _ji
133 nfmpt1 _jjkXjj
134 132 133 nfeq ji=jkXjj
135 nfcv _ki
136 nfcv _k
137 nfmpt1 _kkXjj
138 136 137 nfmpt _kjkXjj
139 135 138 nfeq ki=jkXjj
140 fveq1 i=jkXjjij=jkXjjj
141 140 coeq2d i=jkXjj.ij=.jkXjjj
142 141 fveq1d i=jkXjj.ijk=.jkXjjjk
143 142 adantr i=jkXjjkX.ijk=.jkXjjjk
144 139 143 ixpeq2d i=jkXjjkX.ijk=kX.jkXjjjk
145 144 adantr i=jkXjjjkX.ijk=kX.jkXjjjk
146 134 145 iuneq2df i=jkXjjjkX.ijk=jkX.jkXjjjk
147 146 sseq2d i=jkXjjYjkX.ijkYjkX.jkXjjjk
148 142 fveq2d i=jkXjjvol.ijk=vol.jkXjjjk
149 148 a1d i=jkXjjkXvol.ijk=vol.jkXjjjk
150 139 149 ralrimi i=jkXjjkXvol.ijk=vol.jkXjjjk
151 150 adantr i=jkXjjjkXvol.ijk=vol.jkXjjjk
152 151 prodeq2d i=jkXjjjkXvol.ijk=kXvol.jkXjjjk
153 134 152 mpteq2da i=jkXjjjkXvol.ijk=jkXvol.jkXjjjk
154 153 fveq2d i=jkXjjsum^jkXvol.ijk=sum^jkXvol.jkXjjjk
155 154 eqeq2d i=jkXjj+∞=sum^jkXvol.ijk+∞=sum^jkXvol.jkXjjjk
156 147 155 anbi12d i=jkXjjYjkX.ijk+∞=sum^jkXvol.ijkYjkX.jkXjjjk+∞=sum^jkXvol.jkXjjjk
157 156 rspcev jkXjj2XYjkX.jkXjjjk+∞=sum^jkXvol.jkXjjjki2XYjkX.ijk+∞=sum^jkXvol.ijk
158 22 131 157 syl2anc φi2XYjkX.ijk+∞=sum^jkXvol.ijk