Metamath Proof Explorer


Theorem iblmulc2nc

Description: Choice-free analogue of iblmulc2 . (Contributed by Brendan Leahy, 17-Nov-2017)

Ref Expression
Hypotheses itgmulc2nc.1 φ C
itgmulc2nc.2 φ x A B V
itgmulc2nc.3 φ x A B 𝐿 1
itgmulc2nc.m φ x A C B MblFn
Assertion iblmulc2nc φ x A C B 𝐿 1

Proof

Step Hyp Ref Expression
1 itgmulc2nc.1 φ C
2 itgmulc2nc.2 φ x A B V
3 itgmulc2nc.3 φ x A B 𝐿 1
4 itgmulc2nc.m φ x A C B MblFn
5 ifan if x A 0 C B i k C B i k 0 = if x A if 0 C B i k C B i k 0 0
6 1 adantr φ x A C
7 iblmbf x A B 𝐿 1 x A B MblFn
8 3 7 syl φ x A B MblFn
9 8 2 mbfmptcl φ x A B
10 6 9 mulcld φ x A C B
11 10 adantlr φ k 0 3 x A C B
12 elfzelz k 0 3 k
13 12 ad2antlr φ k 0 3 x A k
14 ax-icn i
15 ine0 i 0
16 expclz i i 0 k i k
17 14 15 16 mp3an12 k i k
18 13 17 syl φ k 0 3 x A i k
19 expne0i i i 0 k i k 0
20 14 15 19 mp3an12 k i k 0
21 13 20 syl φ k 0 3 x A i k 0
22 11 18 21 divcld φ k 0 3 x A C B i k
23 22 recld φ k 0 3 x A C B i k
24 0re 0
25 ifcl C B i k 0 if 0 C B i k C B i k 0
26 23 24 25 sylancl φ k 0 3 x A if 0 C B i k C B i k 0
27 26 rexrd φ k 0 3 x A if 0 C B i k C B i k 0 *
28 max1 0 C B i k 0 if 0 C B i k C B i k 0
29 24 23 28 sylancr φ k 0 3 x A 0 if 0 C B i k C B i k 0
30 elxrge0 if 0 C B i k C B i k 0 0 +∞ if 0 C B i k C B i k 0 * 0 if 0 C B i k C B i k 0
31 27 29 30 sylanbrc φ k 0 3 x A if 0 C B i k C B i k 0 0 +∞
32 0e0iccpnf 0 0 +∞
33 32 a1i φ k 0 3 ¬ x A 0 0 +∞
34 31 33 ifclda φ k 0 3 if x A if 0 C B i k C B i k 0 0 0 +∞
35 34 adantr φ k 0 3 x if x A if 0 C B i k C B i k 0 0 0 +∞
36 5 35 eqeltrid φ k 0 3 x if x A 0 C B i k C B i k 0 0 +∞
37 36 fmpttd φ k 0 3 x if x A 0 C B i k C B i k 0 : 0 +∞
38 9 recld φ x A B
39 38 recnd φ x A B
40 39 abscld φ x A B
41 9 imcld φ x A B
42 41 recnd φ x A B
43 42 abscld φ x A B
44 40 43 readdcld φ x A B + B
45 39 absge0d φ x A 0 B
46 42 absge0d φ x A 0 B
47 40 43 45 46 addge0d φ x A 0 B + B
48 elrege0 B + B 0 +∞ B + B 0 B + B
49 44 47 48 sylanbrc φ x A B + B 0 +∞
50 0e0icopnf 0 0 +∞
51 50 a1i φ ¬ x A 0 0 +∞
52 49 51 ifclda φ if x A B + B 0 0 +∞
53 52 adantr φ x if x A B + B 0 0 +∞
54 53 fmpttd φ x if x A B + B 0 : 0 +∞
55 reex V
56 55 a1i φ V
57 elrege0 B 0 +∞ B 0 B
58 40 45 57 sylanbrc φ x A B 0 +∞
59 58 51 ifclda φ if x A B 0 0 +∞
60 59 adantr φ x if x A B 0 0 +∞
61 elrege0 B 0 +∞ B 0 B
62 43 46 61 sylanbrc φ x A B 0 +∞
63 62 51 ifclda φ if x A B 0 0 +∞
64 63 adantr φ x if x A B 0 0 +∞
65 eqidd φ x if x A B 0 = x if x A B 0
66 eqidd φ x if x A B 0 = x if x A B 0
67 56 60 64 65 66 offval2 φ x if x A B 0 + f x if x A B 0 = x if x A B 0 + if x A B 0
68 iftrue x A if x A B 0 = B
69 iftrue x A if x A B 0 = B
70 68 69 oveq12d x A if x A B 0 + if x A B 0 = B + B
71 iftrue x A if x A B + B 0 = B + B
72 70 71 eqtr4d x A if x A B 0 + if x A B 0 = if x A B + B 0
73 00id 0 + 0 = 0
74 iffalse ¬ x A if x A B 0 = 0
75 iffalse ¬ x A if x A B 0 = 0
76 74 75 oveq12d ¬ x A if x A B 0 + if x A B 0 = 0 + 0
77 iffalse ¬ x A if x A B + B 0 = 0
78 73 76 77 3eqtr4a ¬ x A if x A B 0 + if x A B 0 = if x A B + B 0
79 72 78 pm2.61i if x A B 0 + if x A B 0 = if x A B + B 0
80 79 mpteq2i x if x A B 0 + if x A B 0 = x if x A B + B 0
81 67 80 syl6req φ x if x A B + B 0 = x if x A B 0 + f x if x A B 0
82 81 fveq2d φ 2 x if x A B + B 0 = 2 x if x A B 0 + f x if x A B 0
83 eqid x if x A B 0 = x if x A B 0
84 9 iblcn φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1
85 3 84 mpbid φ x A B 𝐿 1 x A B 𝐿 1
86 85 simpld φ x A B 𝐿 1
87 2 3 83 86 38 iblabsnclem φ x if x A B 0 MblFn 2 x if x A B 0
88 87 simpld φ x if x A B 0 MblFn
89 60 fmpttd φ x if x A B 0 : 0 +∞
90 87 simprd φ 2 x if x A B 0
91 64 fmpttd φ x if x A B 0 : 0 +∞
92 eqid x if x A B 0 = x if x A B 0
93 85 simprd φ x A B 𝐿 1
94 2 3 92 93 41 iblabsnclem φ x if x A B 0 MblFn 2 x if x A B 0
95 94 simprd φ 2 x if x A B 0
96 88 89 90 91 95 itg2addnc φ 2 x if x A B 0 + f x if x A B 0 = 2 x if x A B 0 + 2 x if x A B 0
97 82 96 eqtrd φ 2 x if x A B + B 0 = 2 x if x A B 0 + 2 x if x A B 0
98 90 95 readdcld φ 2 x if x A B 0 + 2 x if x A B 0
99 97 98 eqeltrd φ 2 x if x A B + B 0
100 1 abscld φ C
101 1 absge0d φ 0 C
102 elrege0 C 0 +∞ C 0 C
103 100 101 102 sylanbrc φ C 0 +∞
104 54 99 103 itg2mulc φ 2 × C × f x if x A B + B 0 = C 2 x if x A B + B 0
105 100 adantr φ x C
106 fconstmpt × C = x C
107 106 a1i φ × C = x C
108 eqidd φ x if x A B + B 0 = x if x A B + B 0
109 56 105 53 107 108 offval2 φ × C × f x if x A B + B 0 = x C if x A B + B 0
110 71 oveq2d x A C if x A B + B 0 = C B + B
111 iftrue x A if x A C B + B 0 = C B + B
112 110 111 eqtr4d x A C if x A B + B 0 = if x A C B + B 0
113 112 adantl φ x A C if x A B + B 0 = if x A C B + B 0
114 100 recnd φ C
115 114 mul01d φ C 0 = 0
116 115 adantr φ ¬ x A C 0 = 0
117 77 adantl φ ¬ x A if x A B + B 0 = 0
118 117 oveq2d φ ¬ x A C if x A B + B 0 = C 0
119 iffalse ¬ x A if x A C B + B 0 = 0
120 119 adantl φ ¬ x A if x A C B + B 0 = 0
121 116 118 120 3eqtr4d φ ¬ x A C if x A B + B 0 = if x A C B + B 0
122 113 121 pm2.61dan φ C if x A B + B 0 = if x A C B + B 0
123 122 mpteq2dv φ x C if x A B + B 0 = x if x A C B + B 0
124 109 123 eqtrd φ × C × f x if x A B + B 0 = x if x A C B + B 0
125 124 fveq2d φ 2 × C × f x if x A B + B 0 = 2 x if x A C B + B 0
126 97 oveq2d φ C 2 x if x A B + B 0 = C 2 x if x A B 0 + 2 x if x A B 0
127 104 125 126 3eqtr3d φ 2 x if x A C B + B 0 = C 2 x if x A B 0 + 2 x if x A B 0
128 100 98 remulcld φ C 2 x if x A B 0 + 2 x if x A B 0
129 127 128 eqeltrd φ 2 x if x A C B + B 0
130 129 adantr φ k 0 3 2 x if x A C B + B 0
131 100 adantr φ x A C
132 131 44 remulcld φ x A C B + B
133 132 rexrd φ x A C B + B *
134 101 adantr φ x A 0 C
135 131 44 134 47 mulge0d φ x A 0 C B + B
136 elxrge0 C B + B 0 +∞ C B + B * 0 C B + B
137 133 135 136 sylanbrc φ x A C B + B 0 +∞
138 32 a1i φ ¬ x A 0 0 +∞
139 137 138 ifclda φ if x A C B + B 0 0 +∞
140 139 ad2antrr φ k 0 3 x if x A C B + B 0 0 +∞
141 140 fmpttd φ k 0 3 x if x A C B + B 0 : 0 +∞
142 9 abscld φ x A B
143 131 142 remulcld φ x A C B
144 143 adantlr φ k 0 3 x A C B
145 132 adantlr φ k 0 3 x A C B + B
146 22 releabsd φ k 0 3 x A C B i k C B i k
147 11 18 21 absdivd φ k 0 3 x A C B i k = C B i k
148 elfznn0 k 0 3 k 0
149 absexp i k 0 i k = i k
150 14 148 149 sylancr k 0 3 i k = i k
151 absi i = 1
152 151 oveq1i i k = 1 k
153 1exp k 1 k = 1
154 12 153 syl k 0 3 1 k = 1
155 152 154 syl5eq k 0 3 i k = 1
156 150 155 eqtrd k 0 3 i k = 1
157 156 oveq2d k 0 3 C B i k = C B 1
158 157 ad2antlr φ k 0 3 x A C B i k = C B 1
159 10 abscld φ x A C B
160 159 recnd φ x A C B
161 160 adantlr φ k 0 3 x A C B
162 161 div1d φ k 0 3 x A C B 1 = C B
163 147 158 162 3eqtrd φ k 0 3 x A C B i k = C B
164 6 9 absmuld φ x A C B = C B
165 164 adantlr φ k 0 3 x A C B = C B
166 163 165 eqtrd φ k 0 3 x A C B i k = C B
167 146 166 breqtrd φ k 0 3 x A C B i k C B
168 mulcl i B i B
169 14 42 168 sylancr φ x A i B
170 39 169 abstrid φ x A B + i B B + i B
171 9 replimd φ x A B = B + i B
172 171 fveq2d φ x A B = B + i B
173 absmul i B i B = i B
174 14 42 173 sylancr φ x A i B = i B
175 151 oveq1i i B = 1 B
176 174 175 syl6eq φ x A i B = 1 B
177 43 recnd φ x A B
178 177 mulid2d φ x A 1 B = B
179 176 178 eqtr2d φ x A B = i B
180 179 oveq2d φ x A B + B = B + i B
181 170 172 180 3brtr4d φ x A B B + B
182 142 44 131 134 181 lemul2ad φ x A C B C B + B
183 182 adantlr φ k 0 3 x A C B C B + B
184 23 144 145 167 183 letrd φ k 0 3 x A C B i k C B + B
185 135 adantlr φ k 0 3 x A 0 C B + B
186 breq1 C B i k = if 0 C B i k C B i k 0 C B i k C B + B if 0 C B i k C B i k 0 C B + B
187 breq1 0 = if 0 C B i k C B i k 0 0 C B + B if 0 C B i k C B i k 0 C B + B
188 186 187 ifboth C B i k C B + B 0 C B + B if 0 C B i k C B i k 0 C B + B
189 184 185 188 syl2anc φ k 0 3 x A if 0 C B i k C B i k 0 C B + B
190 iftrue x A if x A if 0 C B i k C B i k 0 0 = if 0 C B i k C B i k 0
191 190 adantl φ k 0 3 x A if x A if 0 C B i k C B i k 0 0 = if 0 C B i k C B i k 0
192 111 adantl φ k 0 3 x A if x A C B + B 0 = C B + B
193 189 191 192 3brtr4d φ k 0 3 x A if x A if 0 C B i k C B i k 0 0 if x A C B + B 0
194 193 ex φ k 0 3 x A if x A if 0 C B i k C B i k 0 0 if x A C B + B 0
195 0le0 0 0
196 195 a1i ¬ x A 0 0
197 iffalse ¬ x A if x A if 0 C B i k C B i k 0 0 = 0
198 196 197 119 3brtr4d ¬ x A if x A if 0 C B i k C B i k 0 0 if x A C B + B 0
199 194 198 pm2.61d1 φ k 0 3 if x A if 0 C B i k C B i k 0 0 if x A C B + B 0
200 5 199 eqbrtrid φ k 0 3 if x A 0 C B i k C B i k 0 if x A C B + B 0
201 200 ralrimivw φ k 0 3 x if x A 0 C B i k C B i k 0 if x A C B + B 0
202 55 a1i φ k 0 3 V
203 eqidd φ k 0 3 x if x A 0 C B i k C B i k 0 = x if x A 0 C B i k C B i k 0
204 eqidd φ k 0 3 x if x A C B + B 0 = x if x A C B + B 0
205 202 36 140 203 204 ofrfval2 φ k 0 3 x if x A 0 C B i k C B i k 0 f x if x A C B + B 0 x if x A 0 C B i k C B i k 0 if x A C B + B 0
206 201 205 mpbird φ k 0 3 x if x A 0 C B i k C B i k 0 f x if x A C B + B 0
207 itg2le x if x A 0 C B i k C B i k 0 : 0 +∞ x if x A C B + B 0 : 0 +∞ x if x A 0 C B i k C B i k 0 f x if x A C B + B 0 2 x if x A 0 C B i k C B i k 0 2 x if x A C B + B 0
208 37 141 206 207 syl3anc φ k 0 3 2 x if x A 0 C B i k C B i k 0 2 x if x A C B + B 0
209 itg2lecl x if x A 0 C B i k C B i k 0 : 0 +∞ 2 x if x A C B + B 0 2 x if x A 0 C B i k C B i k 0 2 x if x A C B + B 0 2 x if x A 0 C B i k C B i k 0
210 37 130 208 209 syl3anc φ k 0 3 2 x if x A 0 C B i k C B i k 0
211 210 ralrimiva φ k 0 3 2 x if x A 0 C B i k C B i k 0
212 eqidd φ x if x A 0 C B i k C B i k 0 = x if x A 0 C B i k C B i k 0
213 eqidd φ x A C B i k = C B i k
214 212 213 10 isibl2 φ x A C B 𝐿 1 x A C B MblFn k 0 3 2 x if x A 0 C B i k C B i k 0
215 4 211 214 mpbir2and φ x A C B 𝐿 1