Metamath Proof Explorer


Theorem ig1peu

Description: There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Revised by AV, 25-Sep-2020)

Ref Expression
Hypotheses ig1peu.p P=Poly1R
ig1peu.u U=LIdealP
ig1peu.z 0˙=0P
ig1peu.m M=Monic1pR
ig1peu.d D=deg1R
Assertion ig1peu RDivRingIUI0˙∃!gIMDg=supDI0˙<

Proof

Step Hyp Ref Expression
1 ig1peu.p P=Poly1R
2 ig1peu.u U=LIdealP
3 ig1peu.z 0˙=0P
4 ig1peu.m M=Monic1pR
5 ig1peu.d D=deg1R
6 eqid BaseP=BaseP
7 6 2 lidlss IUIBaseP
8 7 3ad2ant2 RDivRingIUI0˙IBaseP
9 8 ssdifd RDivRingIUI0˙I0˙BaseP0˙
10 imass2 I0˙BaseP0˙DI0˙DBaseP0˙
11 9 10 syl RDivRingIUI0˙DI0˙DBaseP0˙
12 drngring RDivRingRRing
13 12 3ad2ant1 RDivRingIUI0˙RRing
14 5 1 3 6 deg1n0ima RRingDBaseP0˙0
15 13 14 syl RDivRingIUI0˙DBaseP0˙0
16 11 15 sstrd RDivRingIUI0˙DI0˙0
17 nn0uz 0=0
18 16 17 sseqtrdi RDivRingIUI0˙DI0˙0
19 1 ply1ring RRingPRing
20 13 19 syl RDivRingIUI0˙PRing
21 simp2 RDivRingIUI0˙IU
22 2 3 lidl0cl PRingIU0˙I
23 20 21 22 syl2anc RDivRingIUI0˙0˙I
24 23 snssd RDivRingIUI0˙0˙I
25 simp3 RDivRingIUI0˙I0˙
26 25 necomd RDivRingIUI0˙0˙I
27 pssdifn0 0˙I0˙II0˙
28 24 26 27 syl2anc RDivRingIUI0˙I0˙
29 5 1 6 deg1xrf D:BaseP*
30 ffn D:BaseP*DFnBaseP
31 29 30 ax-mp DFnBaseP
32 31 a1i RDivRingIUI0˙DFnBaseP
33 8 ssdifssd RDivRingIUI0˙I0˙BaseP
34 fnimaeq0 DFnBasePI0˙BasePDI0˙=I0˙=
35 32 33 34 syl2anc RDivRingIUI0˙DI0˙=I0˙=
36 35 necon3bid RDivRingIUI0˙DI0˙I0˙
37 28 36 mpbird RDivRingIUI0˙DI0˙
38 infssuzcl DI0˙0DI0˙supDI0˙<DI0˙
39 18 37 38 syl2anc RDivRingIUI0˙supDI0˙<DI0˙
40 32 33 fvelimabd RDivRingIUI0˙supDI0˙<DI0˙hI0˙Dh=supDI0˙<
41 39 40 mpbid RDivRingIUI0˙hI0˙Dh=supDI0˙<
42 20 adantr RDivRingIUI0˙hI0˙PRing
43 simpl2 RDivRingIUI0˙hI0˙IU
44 13 adantr RDivRingIUI0˙hI0˙RRing
45 eqid algScP=algScP
46 eqid BaseR=BaseR
47 1 45 46 6 ply1sclf RRingalgScP:BaseRBaseP
48 44 47 syl RDivRingIUI0˙hI0˙algScP:BaseRBaseP
49 simpl1 RDivRingIUI0˙hI0˙RDivRing
50 33 sselda RDivRingIUI0˙hI0˙hBaseP
51 eldifsni hI0˙h0˙
52 51 adantl RDivRingIUI0˙hI0˙h0˙
53 eqid Unic1pR=Unic1pR
54 1 6 3 53 drnguc1p RDivRinghBasePh0˙hUnic1pR
55 49 50 52 54 syl3anc RDivRingIUI0˙hI0˙hUnic1pR
56 eqid UnitR=UnitR
57 5 56 53 uc1pldg hUnic1pRcoe1hDhUnitR
58 55 57 syl RDivRingIUI0˙hI0˙coe1hDhUnitR
59 eqid invrR=invrR
60 56 59 unitinvcl RRingcoe1hDhUnitRinvrRcoe1hDhUnitR
61 44 58 60 syl2anc RDivRingIUI0˙hI0˙invrRcoe1hDhUnitR
62 46 56 unitcl invrRcoe1hDhUnitRinvrRcoe1hDhBaseR
63 61 62 syl RDivRingIUI0˙hI0˙invrRcoe1hDhBaseR
64 48 63 ffvelcdmd RDivRingIUI0˙hI0˙algScPinvrRcoe1hDhBaseP
65 eldifi hI0˙hI
66 65 adantl RDivRingIUI0˙hI0˙hI
67 eqid P=P
68 2 6 67 lidlmcl PRingIUalgScPinvrRcoe1hDhBasePhIalgScPinvrRcoe1hDhPhI
69 42 43 64 66 68 syl22anc RDivRingIUI0˙hI0˙algScPinvrRcoe1hDhPhI
70 53 4 1 67 45 5 59 uc1pmon1p RRinghUnic1pRalgScPinvrRcoe1hDhPhM
71 44 55 70 syl2anc RDivRingIUI0˙hI0˙algScPinvrRcoe1hDhPhM
72 69 71 elind RDivRingIUI0˙hI0˙algScPinvrRcoe1hDhPhIM
73 eqid RLRegR=RLRegR
74 73 56 unitrrg RRingUnitRRLRegR
75 44 74 syl RDivRingIUI0˙hI0˙UnitRRLRegR
76 75 61 sseldd RDivRingIUI0˙hI0˙invrRcoe1hDhRLRegR
77 5 1 73 6 67 45 deg1mul3 RRinginvrRcoe1hDhRLRegRhBasePDalgScPinvrRcoe1hDhPh=Dh
78 44 76 50 77 syl3anc RDivRingIUI0˙hI0˙DalgScPinvrRcoe1hDhPh=Dh
79 fveqeq2 g=algScPinvrRcoe1hDhPhDg=DhDalgScPinvrRcoe1hDhPh=Dh
80 79 rspcev algScPinvrRcoe1hDhPhIMDalgScPinvrRcoe1hDhPh=DhgIMDg=Dh
81 72 78 80 syl2anc RDivRingIUI0˙hI0˙gIMDg=Dh
82 eqeq2 Dh=supDI0˙<Dg=DhDg=supDI0˙<
83 82 rexbidv Dh=supDI0˙<gIMDg=DhgIMDg=supDI0˙<
84 81 83 syl5ibcom RDivRingIUI0˙hI0˙Dh=supDI0˙<gIMDg=supDI0˙<
85 84 rexlimdva RDivRingIUI0˙hI0˙Dh=supDI0˙<gIMDg=supDI0˙<
86 41 85 mpd RDivRingIUI0˙gIMDg=supDI0˙<
87 eqid -P=-P
88 13 ad2antrr RDivRingIUI0˙gIMhIMDg=supDI0˙<Dh=supDI0˙<RRing
89 simprl RDivRingIUI0˙gIMhIMgIM
90 89 elin2d RDivRingIUI0˙gIMhIMgM
91 90 adantr RDivRingIUI0˙gIMhIMDg=supDI0˙<Dh=supDI0˙<gM
92 simprl RDivRingIUI0˙gIMhIMDg=supDI0˙<Dh=supDI0˙<Dg=supDI0˙<
93 simprr RDivRingIUI0˙gIMhIMhIM
94 93 elin2d RDivRingIUI0˙gIMhIMhM
95 94 adantr RDivRingIUI0˙gIMhIMDg=supDI0˙<Dh=supDI0˙<hM
96 simprr RDivRingIUI0˙gIMhIMDg=supDI0˙<Dh=supDI0˙<Dh=supDI0˙<
97 5 4 1 87 88 91 92 95 96 deg1submon1p RDivRingIUI0˙gIMhIMDg=supDI0˙<Dh=supDI0˙<Dg-Ph<supDI0˙<
98 97 ex RDivRingIUI0˙gIMhIMDg=supDI0˙<Dh=supDI0˙<Dg-Ph<supDI0˙<
99 18 ad2antrr RDivRingIUI0˙gIMhIMg-Ph0˙DI0˙0
100 31 a1i RDivRingIUI0˙gIMhIMg-Ph0˙DFnBaseP
101 33 ad2antrr RDivRingIUI0˙gIMhIMg-Ph0˙I0˙BaseP
102 20 adantr RDivRingIUI0˙gIMhIMPRing
103 simpl2 RDivRingIUI0˙gIMhIMIU
104 89 elin1d RDivRingIUI0˙gIMhIMgI
105 93 elin1d RDivRingIUI0˙gIMhIMhI
106 2 87 lidlsubcl PRingIUgIhIg-PhI
107 102 103 104 105 106 syl22anc RDivRingIUI0˙gIMhIMg-PhI
108 107 adantr RDivRingIUI0˙gIMhIMg-Ph0˙g-PhI
109 simpr RDivRingIUI0˙gIMhIMg-Ph0˙g-Ph0˙
110 eldifsn g-PhI0˙g-PhIg-Ph0˙
111 108 109 110 sylanbrc RDivRingIUI0˙gIMhIMg-Ph0˙g-PhI0˙
112 fnfvima DFnBasePI0˙BasePg-PhI0˙Dg-PhDI0˙
113 100 101 111 112 syl3anc RDivRingIUI0˙gIMhIMg-Ph0˙Dg-PhDI0˙
114 infssuzle DI0˙0Dg-PhDI0˙supDI0˙<Dg-Ph
115 99 113 114 syl2anc RDivRingIUI0˙gIMhIMg-Ph0˙supDI0˙<Dg-Ph
116 115 ex RDivRingIUI0˙gIMhIMg-Ph0˙supDI0˙<Dg-Ph
117 imassrn DI0˙ranD
118 frn D:BaseP*ranD*
119 29 118 ax-mp ranD*
120 117 119 sstri DI0˙*
121 120 39 sselid RDivRingIUI0˙supDI0˙<*
122 121 adantr RDivRingIUI0˙gIMhIMsupDI0˙<*
123 ringgrp PRingPGrp
124 20 123 syl RDivRingIUI0˙PGrp
125 124 adantr RDivRingIUI0˙gIMhIMPGrp
126 inss1 IMI
127 126 8 sstrid RDivRingIUI0˙IMBaseP
128 127 adantr RDivRingIUI0˙gIMhIMIMBaseP
129 128 89 sseldd RDivRingIUI0˙gIMhIMgBaseP
130 128 93 sseldd RDivRingIUI0˙gIMhIMhBaseP
131 6 87 grpsubcl PGrpgBasePhBasePg-PhBaseP
132 125 129 130 131 syl3anc RDivRingIUI0˙gIMhIMg-PhBaseP
133 5 1 6 deg1xrcl g-PhBasePDg-Ph*
134 132 133 syl RDivRingIUI0˙gIMhIMDg-Ph*
135 122 134 xrlenltd RDivRingIUI0˙gIMhIMsupDI0˙<Dg-Ph¬Dg-Ph<supDI0˙<
136 116 135 sylibd RDivRingIUI0˙gIMhIMg-Ph0˙¬Dg-Ph<supDI0˙<
137 136 necon4ad RDivRingIUI0˙gIMhIMDg-Ph<supDI0˙<g-Ph=0˙
138 98 137 syld RDivRingIUI0˙gIMhIMDg=supDI0˙<Dh=supDI0˙<g-Ph=0˙
139 6 3 87 grpsubeq0 PGrpgBasePhBasePg-Ph=0˙g=h
140 125 129 130 139 syl3anc RDivRingIUI0˙gIMhIMg-Ph=0˙g=h
141 138 140 sylibd RDivRingIUI0˙gIMhIMDg=supDI0˙<Dh=supDI0˙<g=h
142 141 ralrimivva RDivRingIUI0˙gIMhIMDg=supDI0˙<Dh=supDI0˙<g=h
143 fveqeq2 g=hDg=supDI0˙<Dh=supDI0˙<
144 143 reu4 ∃!gIMDg=supDI0˙<gIMDg=supDI0˙<gIMhIMDg=supDI0˙<Dh=supDI0˙<g=h
145 86 142 144 sylanbrc RDivRingIUI0˙∃!gIMDg=supDI0˙<