Metamath Proof Explorer


Theorem itgsubst

Description: Integration by u -substitution. If A ( x ) is a continuous, differentiable function from [ X , Y ] to ( Z , W ) , whose derivative is continuous and integrable, and C ( u ) is a continuous function on ( Z , W ) , then the integral of C ( u ) from K = A ( X ) to L = A ( Y ) is equal to the integral of C ( A ( x ) ) _D A ( x ) from X to Y . In this part of the proof we discharge the assumptions in itgsubstlem , which use the fact that ( Z , W ) is open to shrink the interval a little to ( M , N ) where Z < M < N < W - this is possible because A ( x ) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses itgsubst.x φX
itgsubst.y φY
itgsubst.le φXY
itgsubst.z φZ*
itgsubst.w φW*
itgsubst.a φxXYA:XYcnZW
itgsubst.b φxXYBXYcn𝐿1
itgsubst.c φuZWC:ZWcn
itgsubst.da φdxXYAdx=xXYB
itgsubst.e u=AC=E
itgsubst.k x=XA=K
itgsubst.l x=YA=L
Assertion itgsubst φKLCdu=XYEBdx

Proof

Step Hyp Ref Expression
1 itgsubst.x φX
2 itgsubst.y φY
3 itgsubst.le φXY
4 itgsubst.z φZ*
5 itgsubst.w φW*
6 itgsubst.a φxXYA:XYcnZW
7 itgsubst.b φxXYBXYcn𝐿1
8 itgsubst.c φuZWC:ZWcn
9 itgsubst.da φdxXYAdx=xXYB
10 itgsubst.e u=AC=E
11 itgsubst.k x=XA=K
12 itgsubst.l x=YA=L
13 ioossre ZW
14 ax-resscn
15 cncfss ZWXYcnZWXYcn
16 13 14 15 mp2an XYcnZWXYcn
17 16 6 sselid φxXYA:XYcn
18 1 2 3 17 evthicc φyXYzXYxXYAzxXYAyyXYzXYxXYAyxXYAz
19 ressxr *
20 13 19 sstri ZW*
21 cncff xXYA:XYcnZWxXYA:XYZW
22 6 21 syl φxXYA:XYZW
23 22 adantr φyXYzXYxXYAzxXYAyxXYA:XYZW
24 simprl φyXYzXYxXYAzxXYAyyXY
25 23 24 ffvelcdmd φyXYzXYxXYAzxXYAyxXYAyZW
26 20 25 sselid φyXYzXYxXYAzxXYAyxXYAy*
27 5 adantr φyXYzXYxXYAzxXYAyW*
28 eliooord xXYAyZWZ<xXYAyxXYAy<W
29 25 28 syl φyXYzXYxXYAzxXYAyZ<xXYAyxXYAy<W
30 29 simprd φyXYzXYxXYAzxXYAyxXYAy<W
31 qbtwnxr xXYAy*W*xXYAy<WnxXYAy<nn<W
32 26 27 30 31 syl3anc φyXYzXYxXYAzxXYAynxXYAy<nn<W
33 qre nn
34 33 ad2antrl φyXYzXYxXYAzxXYAynxXYAy<nn<Wn
35 4 ad2antrr φyXYzXYxXYAzxXYAynxXYAy<nn<WZ*
36 26 adantr φyXYzXYxXYAzxXYAynxXYAy<nn<WxXYAy*
37 34 rexrd φyXYzXYxXYAzxXYAynxXYAy<nn<Wn*
38 29 simpld φyXYzXYxXYAzxXYAyZ<xXYAy
39 38 adantr φyXYzXYxXYAzxXYAynxXYAy<nn<WZ<xXYAy
40 simprrl φyXYzXYxXYAzxXYAynxXYAy<nn<WxXYAy<n
41 35 36 37 39 40 xrlttrd φyXYzXYxXYAzxXYAynxXYAy<nn<WZ<n
42 simprrr φyXYzXYxXYAzxXYAynxXYAy<nn<Wn<W
43 5 ad2antrr φyXYzXYxXYAzxXYAynxXYAy<nn<WW*
44 elioo2 Z*W*nZWnZ<nn<W
45 35 43 44 syl2anc φyXYzXYxXYAzxXYAynxXYAy<nn<WnZWnZ<nn<W
46 34 41 42 45 mpbir3and φyXYzXYxXYAzxXYAynxXYAy<nn<WnZW
47 anass φyXYzXYxXYAzxXYAyφyXYzXYxXYAzxXYAy
48 simprrl φyXYnxXYAy<nn<WxXYAy<n
49 48 adantr φyXYnxXYAy<nn<WzXYxXYAy<n
50 22 ad2antrr φyXYnxXYAy<nn<WxXYA:XYZW
51 50 ffvelcdmda φyXYnxXYAy<nn<WzXYxXYAzZW
52 20 51 sselid φyXYnxXYAy<nn<WzXYxXYAz*
53 simplr φyXYnxXYAy<nn<WyXY
54 50 53 ffvelcdmd φyXYnxXYAy<nn<WxXYAyZW
55 20 54 sselid φyXYnxXYAy<nn<WxXYAy*
56 55 adantr φyXYnxXYAy<nn<WzXYxXYAy*
57 33 ad2antrl φyXYnxXYAy<nn<Wn
58 57 adantr φyXYnxXYAy<nn<WzXYn
59 58 rexrd φyXYnxXYAy<nn<WzXYn*
60 xrlelttr xXYAz*xXYAy*n*xXYAzxXYAyxXYAy<nxXYAz<n
61 52 56 59 60 syl3anc φyXYnxXYAy<nn<WzXYxXYAzxXYAyxXYAy<nxXYAz<n
62 49 61 mpan2d φyXYnxXYAy<nn<WzXYxXYAzxXYAyxXYAz<n
63 62 ralimdva φyXYnxXYAy<nn<WzXYxXYAzxXYAyzXYxXYAz<n
64 63 imp φyXYnxXYAy<nn<WzXYxXYAzxXYAyzXYxXYAz<n
65 64 an32s φyXYzXYxXYAzxXYAynxXYAy<nn<WzXYxXYAz<n
66 47 65 sylanbr φyXYzXYxXYAzxXYAynxXYAy<nn<WzXYxXYAz<n
67 32 46 66 reximssdv φyXYzXYxXYAzxXYAynZWzXYxXYAz<n
68 67 rexlimdvaa φyXYzXYxXYAzxXYAynZWzXYxXYAz<n
69 4 adantr φyXYzXYxXYAyxXYAzZ*
70 22 adantr φyXYzXYxXYAyxXYAzxXYA:XYZW
71 simprl φyXYzXYxXYAyxXYAzyXY
72 70 71 ffvelcdmd φyXYzXYxXYAyxXYAzxXYAyZW
73 20 72 sselid φyXYzXYxXYAyxXYAzxXYAy*
74 72 28 syl φyXYzXYxXYAyxXYAzZ<xXYAyxXYAy<W
75 74 simpld φyXYzXYxXYAyxXYAzZ<xXYAy
76 qbtwnxr Z*xXYAy*Z<xXYAymZ<mm<xXYAy
77 69 73 75 76 syl3anc φyXYzXYxXYAyxXYAzmZ<mm<xXYAy
78 qre mm
79 78 ad2antrl φyXYzXYxXYAyxXYAzmZ<mm<xXYAym
80 simprrl φyXYzXYxXYAyxXYAzmZ<mm<xXYAyZ<m
81 79 rexrd φyXYzXYxXYAyxXYAzmZ<mm<xXYAym*
82 73 adantr φyXYzXYxXYAyxXYAzmZ<mm<xXYAyxXYAy*
83 5 ad2antrr φyXYzXYxXYAyxXYAzmZ<mm<xXYAyW*
84 simprrr φyXYzXYxXYAyxXYAzmZ<mm<xXYAym<xXYAy
85 74 simprd φyXYzXYxXYAyxXYAzxXYAy<W
86 85 adantr φyXYzXYxXYAyxXYAzmZ<mm<xXYAyxXYAy<W
87 81 82 83 84 86 xrlttrd φyXYzXYxXYAyxXYAzmZ<mm<xXYAym<W
88 4 ad2antrr φyXYzXYxXYAyxXYAzmZ<mm<xXYAyZ*
89 elioo2 Z*W*mZWmZ<mm<W
90 88 83 89 syl2anc φyXYzXYxXYAyxXYAzmZ<mm<xXYAymZWmZ<mm<W
91 79 80 87 90 mpbir3and φyXYzXYxXYAyxXYAzmZ<mm<xXYAymZW
92 anass φyXYzXYxXYAyxXYAzφyXYzXYxXYAyxXYAz
93 simprrr φyXYmZ<mm<xXYAym<xXYAy
94 93 adantr φyXYmZ<mm<xXYAyzXYm<xXYAy
95 78 ad2antrl φyXYmZ<mm<xXYAym
96 95 adantr φyXYmZ<mm<xXYAyzXYm
97 96 rexrd φyXYmZ<mm<xXYAyzXYm*
98 22 ad2antrr φyXYmZ<mm<xXYAyxXYA:XYZW
99 simplr φyXYmZ<mm<xXYAyyXY
100 98 99 ffvelcdmd φyXYmZ<mm<xXYAyxXYAyZW
101 20 100 sselid φyXYmZ<mm<xXYAyxXYAy*
102 101 adantr φyXYmZ<mm<xXYAyzXYxXYAy*
103 98 ffvelcdmda φyXYmZ<mm<xXYAyzXYxXYAzZW
104 20 103 sselid φyXYmZ<mm<xXYAyzXYxXYAz*
105 xrltletr m*xXYAy*xXYAz*m<xXYAyxXYAyxXYAzm<xXYAz
106 97 102 104 105 syl3anc φyXYmZ<mm<xXYAyzXYm<xXYAyxXYAyxXYAzm<xXYAz
107 94 106 mpand φyXYmZ<mm<xXYAyzXYxXYAyxXYAzm<xXYAz
108 107 ralimdva φyXYmZ<mm<xXYAyzXYxXYAyxXYAzzXYm<xXYAz
109 108 imp φyXYmZ<mm<xXYAyzXYxXYAyxXYAzzXYm<xXYAz
110 109 an32s φyXYzXYxXYAyxXYAzmZ<mm<xXYAyzXYm<xXYAz
111 92 110 sylanbr φyXYzXYxXYAyxXYAzmZ<mm<xXYAyzXYm<xXYAz
112 77 91 111 reximssdv φyXYzXYxXYAyxXYAzmZWzXYm<xXYAz
113 112 rexlimdvaa φyXYzXYxXYAyxXYAzmZWzXYm<xXYAz
114 ancom nZWzXYxXYAz<nmZWzXYm<xXYAzmZWzXYm<xXYAznZWzXYxXYAz<n
115 reeanv mZWnZWzXYm<xXYAzzXYxXYAz<nmZWzXYm<xXYAznZWzXYxXYAz<n
116 114 115 bitr4i nZWzXYxXYAz<nmZWzXYm<xXYAzmZWnZWzXYm<xXYAzzXYxXYAz<n
117 r19.26 zXYm<xXYAzxXYAz<nzXYm<xXYAzzXYxXYAz<n
118 22 adantr φmZWnZWxXYA:XYZW
119 118 ffvelcdmda φmZWnZWzXYxXYAzZW
120 13 119 sselid φmZWnZWzXYxXYAz
121 120 3biant1d φmZWnZWzXYm<xXYAzxXYAz<nxXYAzm<xXYAzxXYAz<n
122 simplrl φmZWnZWzXYmZW
123 20 122 sselid φmZWnZWzXYm*
124 simplrr φmZWnZWzXYnZW
125 20 124 sselid φmZWnZWzXYn*
126 elioo2 m*n*xXYAzmnxXYAzm<xXYAzxXYAz<n
127 123 125 126 syl2anc φmZWnZWzXYxXYAzmnxXYAzm<xXYAzxXYAz<n
128 121 127 bitr4d φmZWnZWzXYm<xXYAzxXYAz<nxXYAzmn
129 128 ralbidva φmZWnZWzXYm<xXYAzxXYAz<nzXYxXYAzmn
130 nffvmpt1 _xxXYAz
131 130 nfel1 xxXYAzmn
132 nfv zxXYAxmn
133 fveq2 z=xxXYAz=xXYAx
134 133 eleq1d z=xxXYAzmnxXYAxmn
135 131 132 134 cbvralw zXYxXYAzmnxXYxXYAxmn
136 simpr φxXYxXY
137 22 fvmptelcdm φxXYAZW
138 eqid xXYA=xXYA
139 138 fvmpt2 xXYAZWxXYAx=A
140 136 137 139 syl2anc φxXYxXYAx=A
141 140 eleq1d φxXYxXYAxmnAmn
142 141 ralbidva φxXYxXYAxmnxXYAmn
143 135 142 bitrid φzXYxXYAzmnxXYAmn
144 143 adantr φmZWnZWzXYxXYAzmnxXYAmn
145 1 adantr φmZWnZWxXYAmnX
146 2 adantr φmZWnZWxXYAmnY
147 3 adantr φmZWnZWxXYAmnXY
148 4 adantr φmZWnZWxXYAmnZ*
149 5 adantr φmZWnZWxXYAmnW*
150 nfcv _yA
151 nfcsb1v _xy/xA
152 csbeq1a x=yA=y/xA
153 150 151 152 cbvmpt xXYA=yXYy/xA
154 153 6 eqeltrrid φyXYy/xA:XYcnZW
155 154 adantr φmZWnZWxXYAmnyXYy/xA:XYcnZW
156 nfcv _yB
157 nfcsb1v _xy/xB
158 csbeq1a x=yB=y/xB
159 156 157 158 cbvmpt xXYB=yXYy/xB
160 159 7 eqeltrrid φyXYy/xBXYcn𝐿1
161 160 adantr φmZWnZWxXYAmnyXYy/xBXYcn𝐿1
162 nfcv _vC
163 nfcsb1v _uv/uC
164 csbeq1a u=vC=v/uC
165 162 163 164 cbvmpt uZWC=vZWv/uC
166 165 8 eqeltrrid φvZWv/uC:ZWcn
167 166 adantr φmZWnZWxXYAmnvZWv/uC:ZWcn
168 153 oveq2i dxXYAdx=dyXYy/xAdy
169 9 168 159 3eqtr3g φdyXYy/xAdy=yXYy/xB
170 169 adantr φmZWnZWxXYAmndyXYy/xAdy=yXYy/xB
171 csbeq1 v=y/xAv/uC=y/xA/uC
172 csbeq1 y=Xy/xA=X/xA
173 csbeq1 y=Yy/xA=Y/xA
174 simprll φmZWnZWxXYAmnmZW
175 simprlr φmZWnZWxXYAmnnZW
176 simprr φmZWnZWxXYAmnxXYAmn
177 151 nfel1 xy/xAmn
178 152 eleq1d x=yAmny/xAmn
179 177 178 rspc yXYxXYAmny/xAmn
180 176 179 mpan9 φmZWnZWxXYAmnyXYy/xAmn
181 145 146 147 148 149 155 161 167 170 171 172 173 174 175 180 itgsubstlem φmZWnZWxXYAmnX/xAY/xAv/uCdv=XYy/xA/uCy/xBdy
182 164 162 163 cbvditg X/xAY/xACdu=X/xAY/xAv/uCdv
183 nfcvd X_xK
184 183 11 csbiegf XX/xA=K
185 ditgeq1 X/xA=KX/xAY/xACdu=KY/xACdu
186 1 184 185 3syl φX/xAY/xACdu=KY/xACdu
187 nfcvd Y_xL
188 187 12 csbiegf YY/xA=L
189 ditgeq2 Y/xA=LKY/xACdu=KLCdu
190 2 188 189 3syl φKY/xACdu=KLCdu
191 186 190 eqtrd φX/xAY/xACdu=KLCdu
192 182 191 eqtr3id φX/xAY/xAv/uCdv=KLCdu
193 192 adantr φmZWnZWxXYAmnX/xAY/xAv/uCdv=KLCdu
194 152 csbeq1d x=yA/uC=y/xA/uC
195 194 158 oveq12d x=yA/uCB=y/xA/uCy/xB
196 nfcv _yA/uCB
197 nfcv _xC
198 151 197 nfcsbw _xy/xA/uC
199 nfcv _x×
200 198 199 157 nfov _xy/xA/uCy/xB
201 195 196 200 cbvditg XYA/uCBdx=XYy/xA/uCy/xBdy
202 ioossicc XYXY
203 202 sseli xXYxXY
204 203 137 sylan2 φxXYAZW
205 nfcvd AZW_uE
206 205 10 csbiegf AZWA/uC=E
207 204 206 syl φxXYA/uC=E
208 207 oveq1d φxXYA/uCB=EB
209 208 itgeq2dv φXYA/uCBdx=XYEBdx
210 3 ditgpos φXYA/uCBdx=XYA/uCBdx
211 3 ditgpos φXYEBdx=XYEBdx
212 209 210 211 3eqtr4d φXYA/uCBdx=XYEBdx
213 201 212 eqtr3id φXYy/xA/uCy/xBdy=XYEBdx
214 213 adantr φmZWnZWxXYAmnXYy/xA/uCy/xBdy=XYEBdx
215 181 193 214 3eqtr3d φmZWnZWxXYAmnKLCdu=XYEBdx
216 215 expr φmZWnZWxXYAmnKLCdu=XYEBdx
217 144 216 sylbid φmZWnZWzXYxXYAzmnKLCdu=XYEBdx
218 129 217 sylbid φmZWnZWzXYm<xXYAzxXYAz<nKLCdu=XYEBdx
219 117 218 biimtrrid φmZWnZWzXYm<xXYAzzXYxXYAz<nKLCdu=XYEBdx
220 219 rexlimdvva φmZWnZWzXYm<xXYAzzXYxXYAz<nKLCdu=XYEBdx
221 116 220 biimtrid φnZWzXYxXYAz<nmZWzXYm<xXYAzKLCdu=XYEBdx
222 68 113 221 syl2and φyXYzXYxXYAzxXYAyyXYzXYxXYAyxXYAzKLCdu=XYEBdx
223 18 222 mpd φKLCdu=XYEBdx