Metamath Proof Explorer


Theorem itgsubsticclem

Description: lemma for itgsubsticc . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgsubsticclem.1 F=uKLC
itgsubsticclem.2 G=uifuKLFuifu<KFKFL
itgsubsticclem.3 φX
itgsubsticclem.4 φY
itgsubsticclem.5 φXY
itgsubsticclem.6 φxXYA:XYcnKL
itgsubsticclem.7 φxXYBXYcn𝐿1
itgsubsticclem.8 φF:KLcn
itgsubsticclem.9 φK
itgsubsticclem.10 φL
itgsubsticclem.11 φKL
itgsubsticclem.12 φdxXYAdx=xXYB
itgsubsticclem.13 u=AC=E
itgsubsticclem.14 x=XA=K
itgsubsticclem.15 x=YA=L
Assertion itgsubsticclem φKLCdu=XYEBdx

Proof

Step Hyp Ref Expression
1 itgsubsticclem.1 F=uKLC
2 itgsubsticclem.2 G=uifuKLFuifu<KFKFL
3 itgsubsticclem.3 φX
4 itgsubsticclem.4 φY
5 itgsubsticclem.5 φXY
6 itgsubsticclem.6 φxXYA:XYcnKL
7 itgsubsticclem.7 φxXYBXYcn𝐿1
8 itgsubsticclem.8 φF:KLcn
9 itgsubsticclem.9 φK
10 itgsubsticclem.10 φL
11 itgsubsticclem.11 φKL
12 itgsubsticclem.12 φdxXYAdx=xXYB
13 itgsubsticclem.13 u=AC=E
14 itgsubsticclem.14 x=XA=K
15 itgsubsticclem.15 x=YA=L
16 fveq2 u=wGu=Gw
17 nfcv _wGu
18 nfmpt1 _uuifuKLFuifu<KFKFL
19 2 18 nfcxfr _uG
20 nfcv _uw
21 19 20 nffv _uGw
22 16 17 21 cbvditg KLGudu=KLGwdw
23 9 10 iccssred φKL
24 23 adantr φuKLKL
25 ioossicc KLKL
26 25 sseli uKLuKL
27 26 adantl φuKLuKL
28 24 27 sseldd φuKLu
29 27 iftrued φuKLifuKLFuifu<KFKFL=Fu
30 1 a1i φF=uKLC
31 cncff F:KLcnF:KL
32 8 31 syl φF:KL
33 30 32 feq1dd φuKLC:KL
34 33 fvmptelcdm φuKLC
35 27 34 syldan φuKLC
36 1 fvmpt2 uKLCFu=C
37 27 35 36 syl2anc φuKLFu=C
38 37 35 eqeltrd φuKLFu
39 29 38 eqeltrd φuKLifuKLFuifu<KFKFL
40 2 fvmpt2 uifuKLFuifu<KFKFLGu=ifuKLFuifu<KFKFL
41 28 39 40 syl2anc φuKLGu=ifuKLFuifu<KFKFL
42 41 29 37 3eqtrd φuKLGu=C
43 11 42 ditgeq3d φKLGudu=KLCdu
44 mnfxr −∞*
45 44 a1i φ−∞*
46 pnfxr +∞*
47 46 a1i φ+∞*
48 ioomax −∞+∞=
49 48 eqcomi =−∞+∞
50 49 a1i φ=−∞+∞
51 23 50 sseqtrd φKL−∞+∞
52 ax-resscn
53 50 52 eqsstrrdi φ−∞+∞
54 cncfss KL−∞+∞−∞+∞XYcnKLXYcn−∞+∞
55 51 53 54 syl2anc φXYcnKLXYcn−∞+∞
56 55 6 sseldd φxXYA:XYcn−∞+∞
57 nfmpt1 _uuKLC
58 1 57 nfcxfr _uF
59 eqid topGenran.=topGenran.
60 eqid TopOpenfld=TopOpenfld
61 eqid TopOpenfld=TopOpenfld
62 61 cnfldtop TopOpenfldTop
63 62 a1i φTopOpenfldTop
64 23 52 sstrdi φKL
65 ssid
66 eqid TopOpenfld𝑡KL=TopOpenfld𝑡KL
67 unicntop =TopOpenfld
68 67 restid TopOpenfldTopTopOpenfld𝑡=TopOpenfld
69 62 68 ax-mp TopOpenfld𝑡=TopOpenfld
70 69 eqcomi TopOpenfld=TopOpenfld𝑡
71 61 66 70 cncfcn KLKLcn=TopOpenfld𝑡KLCnTopOpenfld
72 64 65 71 sylancl φKLcn=TopOpenfld𝑡KLCnTopOpenfld
73 reex V
74 73 a1i φV
75 restabs TopOpenfldTopKLVTopOpenfld𝑡𝑡KL=TopOpenfld𝑡KL
76 63 23 74 75 syl3anc φTopOpenfld𝑡𝑡KL=TopOpenfld𝑡KL
77 61 tgioo2 topGenran.=TopOpenfld𝑡
78 77 eqcomi TopOpenfld𝑡=topGenran.
79 78 a1i φTopOpenfld𝑡=topGenran.
80 79 oveq1d φTopOpenfld𝑡𝑡KL=topGenran.𝑡KL
81 76 80 eqtr3d φTopOpenfld𝑡KL=topGenran.𝑡KL
82 81 oveq1d φTopOpenfld𝑡KLCnTopOpenfld=topGenran.𝑡KLCnTopOpenfld
83 72 82 eqtrd φKLcn=topGenran.𝑡KLCnTopOpenfld
84 8 83 eleqtrd φFtopGenran.𝑡KLCnTopOpenfld
85 58 59 60 2 9 10 11 63 84 icccncfext φGtopGenran.CnTopOpenfld𝑡ranFGKL=F
86 85 simpld φGtopGenran.CnTopOpenfld𝑡ranF
87 uniretop =topGenran.
88 eqid TopOpenfld𝑡ranF=TopOpenfld𝑡ranF
89 87 88 cnf GtopGenran.CnTopOpenfld𝑡ranFG:TopOpenfld𝑡ranF
90 86 89 syl φG:TopOpenfld𝑡ranF
91 50 feq2d φG:TopOpenfld𝑡ranFG:−∞+∞TopOpenfld𝑡ranF
92 90 91 mpbid φG:−∞+∞TopOpenfld𝑡ranF
93 92 feqmptd φG=w−∞+∞Gw
94 32 frnd φranF
95 cncfss ranF−∞+∞cnranF−∞+∞cn
96 94 65 95 sylancl φ−∞+∞cnranF−∞+∞cn
97 49 oveq2i TopOpenfld𝑡=TopOpenfld𝑡−∞+∞
98 77 97 eqtri topGenran.=TopOpenfld𝑡−∞+∞
99 eqid TopOpenfld𝑡ranF=TopOpenfld𝑡ranF
100 61 98 99 cncfcn −∞+∞ranF−∞+∞cnranF=topGenran.CnTopOpenfld𝑡ranF
101 53 94 100 syl2anc φ−∞+∞cnranF=topGenran.CnTopOpenfld𝑡ranF
102 101 eqcomd φtopGenran.CnTopOpenfld𝑡ranF=−∞+∞cnranF
103 86 102 eleqtrd φG:−∞+∞cnranF
104 96 103 sseldd φG:−∞+∞cn
105 93 104 eqeltrrd φw−∞+∞Gw:−∞+∞cn
106 fveq2 w=AGw=GA
107 3 4 5 45 47 56 7 105 12 106 14 15 itgsubst φKLGwdw=XYGABdx
108 22 43 107 3eqtr3a φKLCdu=XYGABdx
109 2 a1i φxXYG=uifuKLFuifu<KFKFL
110 simpr φxXYu=Au=A
111 61 cnfldtopon TopOpenfldTopOn
112 3 4 iccssred φXY
113 112 52 sstrdi φXY
114 resttopon TopOpenfldTopOnXYTopOpenfld𝑡XYTopOnXY
115 111 113 114 sylancr φTopOpenfld𝑡XYTopOnXY
116 resttopon TopOpenfldTopOnKLTopOpenfld𝑡KLTopOnKL
117 111 64 116 sylancr φTopOpenfld𝑡KLTopOnKL
118 eqid TopOpenfld𝑡XY=TopOpenfld𝑡XY
119 61 118 66 cncfcn XYKLXYcnKL=TopOpenfld𝑡XYCnTopOpenfld𝑡KL
120 113 64 119 syl2anc φXYcnKL=TopOpenfld𝑡XYCnTopOpenfld𝑡KL
121 6 120 eleqtrd φxXYATopOpenfld𝑡XYCnTopOpenfld𝑡KL
122 cnf2 TopOpenfld𝑡XYTopOnXYTopOpenfld𝑡KLTopOnKLxXYATopOpenfld𝑡XYCnTopOpenfld𝑡KLxXYA:XYKL
123 115 117 121 122 syl3anc φxXYA:XYKL
124 123 adantr φxXYxXYA:XYKL
125 eqid xXYA=xXYA
126 125 fmpt xXYAKLxXYA:XYKL
127 124 126 sylibr φxXYxXYAKL
128 ioossicc XYXY
129 128 sseli xXYxXY
130 129 adantl φxXYxXY
131 rsp xXYAKLxXYAKL
132 127 130 131 sylc φxXYAKL
133 132 adantr φxXYu=AAKL
134 110 133 eqeltrd φxXYu=AuKL
135 134 iftrued φxXYu=AifuKLFuifu<KFKFL=Fu
136 simpll φxXYu=Aφ
137 136 134 34 syl2anc φxXYu=AC
138 134 137 36 syl2anc φxXYu=AFu=C
139 13 adantl φxXYu=AC=E
140 135 138 139 3eqtrd φxXYu=AifuKLFuifu<KFKFL=E
141 23 adantr φxXYKL
142 141 132 sseldd φxXYA
143 elex AKLAV
144 132 143 syl φxXYAV
145 isset AVuu=A
146 144 145 sylib φxXYuu=A
147 139 137 eqeltrrd φxXYu=AE
148 146 147 exlimddv φxXYE
149 109 140 142 148 fvmptd φxXYGA=E
150 149 oveq1d φxXYGAB=EB
151 5 150 ditgeq3d φXYGABdx=XYEBdx
152 108 151 eqtrd φKLCdu=XYEBdx