Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension)
Mersenne primes
lighneallem3
Next ⟩
lighneallem4a
Metamath Proof Explorer
Ascii
Unicode
Theorem
lighneallem3
Description:
Lemma 3 for
lighneal
.
(Contributed by
AV
, 11-Aug-2021)
Ref
Expression
Assertion
lighneallem3
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
N
∧
2
∥
M
∧
2
N
−
1
=
P
M
→
M
=
1
Proof
Step
Hyp
Ref
Expression
1
oveq2
⊢
N
=
1
→
2
N
=
2
1
2
2cn
⊢
2
∈
ℂ
3
exp1
⊢
2
∈
ℂ
→
2
1
=
2
4
2
3
ax-mp
⊢
2
1
=
2
5
1
4
eqtrdi
⊢
N
=
1
→
2
N
=
2
6
5
oveq1d
⊢
N
=
1
→
2
N
−
1
=
2
−
1
7
2m1e1
⊢
2
−
1
=
1
8
6
7
eqtrdi
⊢
N
=
1
→
2
N
−
1
=
1
9
8
adantl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
=
1
→
2
N
−
1
=
1
10
9
eqeq1d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
=
1
→
2
N
−
1
=
P
M
↔
1
=
P
M
11
eldifi
⊢
P
∈
ℙ
∖
2
→
P
∈
ℙ
12
prmnn
⊢
P
∈
ℙ
→
P
∈
ℕ
13
nnnn0
⊢
P
∈
ℕ
→
P
∈
ℕ
0
14
11
12
13
3syl
⊢
P
∈
ℙ
∖
2
→
P
∈
ℕ
0
15
14
nn0zd
⊢
P
∈
ℙ
∖
2
→
P
∈
ℤ
16
iddvdsexp
⊢
P
∈
ℤ
∧
M
∈
ℕ
→
P
∥
P
M
17
15
16
sylan
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
→
P
∥
P
M
18
breq2
⊢
1
=
P
M
→
P
∥
1
↔
P
∥
P
M
19
18
adantl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
1
=
P
M
→
P
∥
1
↔
P
∥
P
M
20
dvds1
⊢
P
∈
ℕ
0
→
P
∥
1
↔
P
=
1
21
14
20
syl
⊢
P
∈
ℙ
∖
2
→
P
∥
1
↔
P
=
1
22
eleq1
⊢
P
=
1
→
P
∈
ℙ
↔
1
∈
ℙ
23
1nprm
⊢
¬
1
∈
ℙ
24
23
pm2.21i
⊢
1
∈
ℙ
→
M
=
1
25
22
24
syl6bi
⊢
P
=
1
→
P
∈
ℙ
→
M
=
1
26
11
25
syl5com
⊢
P
∈
ℙ
∖
2
→
P
=
1
→
M
=
1
27
21
26
sylbid
⊢
P
∈
ℙ
∖
2
→
P
∥
1
→
M
=
1
28
27
ad2antrr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
1
=
P
M
→
P
∥
1
→
M
=
1
29
19
28
sylbird
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
1
=
P
M
→
P
∥
P
M
→
M
=
1
30
29
ex
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
→
1
=
P
M
→
P
∥
P
M
→
M
=
1
31
17
30
mpid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
→
1
=
P
M
→
M
=
1
32
31
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
=
1
→
1
=
P
M
→
M
=
1
33
10
32
sylbid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
=
1
→
2
N
−
1
=
P
M
→
M
=
1
34
33
ex
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
→
N
=
1
→
2
N
−
1
=
P
M
→
M
=
1
35
34
com23
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
→
2
N
−
1
=
P
M
→
N
=
1
→
M
=
1
36
35
a1d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
→
¬
2
∥
N
∧
2
∥
M
→
2
N
−
1
=
P
M
→
N
=
1
→
M
=
1
37
36
3adant3
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
¬
2
∥
N
∧
2
∥
M
→
2
N
−
1
=
P
M
→
N
=
1
→
M
=
1
38
37
3imp
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
N
∧
2
∥
M
∧
2
N
−
1
=
P
M
→
N
=
1
→
M
=
1
39
neqne
⊢
¬
N
=
1
→
N
≠
1
40
39
anim2i
⊢
N
∈
ℕ
∧
¬
N
=
1
→
N
∈
ℕ
∧
N
≠
1
41
eluz2b3
⊢
N
∈
ℤ
≥
2
↔
N
∈
ℕ
∧
N
≠
1
42
40
41
sylibr
⊢
N
∈
ℕ
∧
¬
N
=
1
→
N
∈
ℤ
≥
2
43
oddge22np1
⊢
N
∈
ℤ
≥
2
→
¬
2
∥
N
↔
∃
j
∈
ℕ
2
j
+
1
=
N
44
42
43
syl
⊢
N
∈
ℕ
∧
¬
N
=
1
→
¬
2
∥
N
↔
∃
j
∈
ℕ
2
j
+
1
=
N
45
44
3ad2antl3
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
N
=
1
→
¬
2
∥
N
↔
∃
j
∈
ℕ
2
j
+
1
=
N
46
oveq2
⊢
N
=
2
j
+
1
→
2
N
=
2
2
j
+
1
47
46
oveq1d
⊢
N
=
2
j
+
1
→
2
N
−
1
=
2
2
j
+
1
−
1
48
47
eqcoms
⊢
2
j
+
1
=
N
→
2
N
−
1
=
2
2
j
+
1
−
1
49
2
a1i
⊢
j
∈
ℕ
→
2
∈
ℂ
50
2nn0
⊢
2
∈
ℕ
0
51
50
a1i
⊢
j
∈
ℕ
→
2
∈
ℕ
0
52
nnnn0
⊢
j
∈
ℕ
→
j
∈
ℕ
0
53
51
52
nn0mulcld
⊢
j
∈
ℕ
→
2
j
∈
ℕ
0
54
49
53
expp1d
⊢
j
∈
ℕ
→
2
2
j
+
1
=
2
2
j
⋅
2
55
51
53
nn0expcld
⊢
j
∈
ℕ
→
2
2
j
∈
ℕ
0
56
55
nn0cnd
⊢
j
∈
ℕ
→
2
2
j
∈
ℂ
57
56
49
mulcomd
⊢
j
∈
ℕ
→
2
2
j
⋅
2
=
2
2
2
j
58
54
57
eqtrd
⊢
j
∈
ℕ
→
2
2
j
+
1
=
2
2
2
j
59
58
oveq1d
⊢
j
∈
ℕ
→
2
2
j
+
1
−
1
=
2
2
2
j
−
1
60
npcan1
⊢
2
2
j
∈
ℂ
→
2
2
j
-
1
+
1
=
2
2
j
61
56
60
syl
⊢
j
∈
ℕ
→
2
2
j
-
1
+
1
=
2
2
j
62
61
eqcomd
⊢
j
∈
ℕ
→
2
2
j
=
2
2
j
-
1
+
1
63
62
oveq2d
⊢
j
∈
ℕ
→
2
2
2
j
=
2
2
2
j
-
1
+
1
64
peano2cnm
⊢
2
2
j
∈
ℂ
→
2
2
j
−
1
∈
ℂ
65
56
64
syl
⊢
j
∈
ℕ
→
2
2
j
−
1
∈
ℂ
66
1cnd
⊢
j
∈
ℕ
→
1
∈
ℂ
67
49
65
66
adddid
⊢
j
∈
ℕ
→
2
2
2
j
-
1
+
1
=
2
2
2
j
−
1
+
2
⋅
1
68
63
67
eqtrd
⊢
j
∈
ℕ
→
2
2
2
j
=
2
2
2
j
−
1
+
2
⋅
1
69
68
oveq1d
⊢
j
∈
ℕ
→
2
2
2
j
−
1
=
2
2
2
j
−
1
+
2
⋅
1
-
1
70
49
65
mulcld
⊢
j
∈
ℕ
→
2
2
2
j
−
1
∈
ℂ
71
ax-1cn
⊢
1
∈
ℂ
72
2
71
mulcli
⊢
2
⋅
1
∈
ℂ
73
72
a1i
⊢
j
∈
ℕ
→
2
⋅
1
∈
ℂ
74
70
73
66
addsubassd
⊢
j
∈
ℕ
→
2
2
2
j
−
1
+
2
⋅
1
-
1
=
2
2
2
j
−
1
+
2
⋅
1
-
1
75
2t1e2
⊢
2
⋅
1
=
2
76
75
oveq1i
⊢
2
⋅
1
−
1
=
2
−
1
77
76
7
eqtri
⊢
2
⋅
1
−
1
=
1
78
77
a1i
⊢
j
∈
ℕ
→
2
⋅
1
−
1
=
1
79
78
oveq2d
⊢
j
∈
ℕ
→
2
2
2
j
−
1
+
2
⋅
1
-
1
=
2
2
2
j
−
1
+
1
80
74
79
eqtrd
⊢
j
∈
ℕ
→
2
2
2
j
−
1
+
2
⋅
1
-
1
=
2
2
2
j
−
1
+
1
81
59
69
80
3eqtrd
⊢
j
∈
ℕ
→
2
2
j
+
1
−
1
=
2
2
2
j
−
1
+
1
82
81
ad2antlr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
2
2
j
+
1
−
1
=
2
2
2
j
−
1
+
1
83
48
82
sylan9eqr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
∧
2
j
+
1
=
N
→
2
N
−
1
=
2
2
2
j
−
1
+
1
84
83
eqeq1d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
∧
2
j
+
1
=
N
→
2
N
−
1
=
P
M
↔
2
2
2
j
−
1
+
1
=
P
M
85
14
3ad2ant1
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
P
∈
ℕ
0
86
nnnn0
⊢
M
∈
ℕ
→
M
∈
ℕ
0
87
86
3ad2ant2
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
M
∈
ℕ
0
88
85
87
nn0expcld
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
P
M
∈
ℕ
0
89
88
nn0cnd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
P
M
∈
ℂ
90
89
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
→
P
M
∈
ℂ
91
1cnd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
→
1
∈
ℂ
92
70
adantl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
→
2
2
2
j
−
1
∈
ℂ
93
90
91
92
3jca
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
→
P
M
∈
ℂ
∧
1
∈
ℂ
∧
2
2
2
j
−
1
∈
ℂ
94
93
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
M
∈
ℂ
∧
1
∈
ℂ
∧
2
2
2
j
−
1
∈
ℂ
95
subadd2
⊢
P
M
∈
ℂ
∧
1
∈
ℂ
∧
2
2
2
j
−
1
∈
ℂ
→
P
M
−
1
=
2
2
2
j
−
1
↔
2
2
2
j
−
1
+
1
=
P
M
96
94
95
syl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
M
−
1
=
2
2
2
j
−
1
↔
2
2
2
j
−
1
+
1
=
P
M
97
nncn
⊢
P
∈
ℕ
→
P
∈
ℂ
98
11
12
97
3syl
⊢
P
∈
ℙ
∖
2
→
P
∈
ℂ
99
98
3ad2ant1
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
P
∈
ℂ
100
99
87
pwm1geoser
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
P
M
−
1
=
P
−
1
∑
k
=
0
M
−
1
P
k
101
100
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
→
P
M
−
1
=
P
−
1
∑
k
=
0
M
−
1
P
k
102
101
eqeq1d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
→
P
M
−
1
=
2
2
2
j
−
1
↔
P
−
1
∑
k
=
0
M
−
1
P
k
=
2
2
2
j
−
1
103
102
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
M
−
1
=
2
2
2
j
−
1
↔
P
−
1
∑
k
=
0
M
−
1
P
k
=
2
2
2
j
−
1
104
99
ad2antrr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
∈
ℂ
105
1cnd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
1
∈
ℂ
106
104
105
subcld
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
−
1
∈
ℂ
107
fzfid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
0
…
M
−
1
∈
Fin
108
85
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
k
∈
0
…
M
−
1
→
P
∈
ℕ
0
109
elfznn0
⊢
k
∈
0
…
M
−
1
→
k
∈
ℕ
0
110
109
adantl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
k
∈
0
…
M
−
1
→
k
∈
ℕ
0
111
108
110
nn0expcld
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
k
∈
0
…
M
−
1
→
P
k
∈
ℕ
0
112
111
nn0zd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
k
∈
0
…
M
−
1
→
P
k
∈
ℤ
113
107
112
fsumzcl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
∑
k
=
0
M
−
1
P
k
∈
ℤ
114
113
zcnd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
∑
k
=
0
M
−
1
P
k
∈
ℂ
115
114
ad2antrr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
∑
k
=
0
M
−
1
P
k
∈
ℂ
116
106
115
mulcld
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
−
1
∑
k
=
0
M
−
1
P
k
∈
ℂ
117
56
ad2antlr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
2
2
j
∈
ℂ
118
117
105
subcld
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
2
2
j
−
1
∈
ℂ
119
2rp
⊢
2
∈
ℝ
+
120
119
a1i
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
2
∈
ℝ
+
121
120
rpcnne0d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
2
∈
ℂ
∧
2
≠
0
122
divmul2
⊢
P
−
1
∑
k
=
0
M
−
1
P
k
∈
ℂ
∧
2
2
j
−
1
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
P
−
1
∑
k
=
0
M
−
1
P
k
2
=
2
2
j
−
1
↔
P
−
1
∑
k
=
0
M
−
1
P
k
=
2
2
2
j
−
1
123
116
118
121
122
syl3anc
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
−
1
∑
k
=
0
M
−
1
P
k
2
=
2
2
j
−
1
↔
P
−
1
∑
k
=
0
M
−
1
P
k
=
2
2
2
j
−
1
124
div23
⊢
P
−
1
∈
ℂ
∧
∑
k
=
0
M
−
1
P
k
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
P
−
1
∑
k
=
0
M
−
1
P
k
2
=
P
−
1
2
∑
k
=
0
M
−
1
P
k
125
106
115
121
124
syl3anc
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
−
1
∑
k
=
0
M
−
1
P
k
2
=
P
−
1
2
∑
k
=
0
M
−
1
P
k
126
125
eqeq1d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
−
1
∑
k
=
0
M
−
1
P
k
2
=
2
2
j
−
1
↔
P
−
1
2
∑
k
=
0
M
−
1
P
k
=
2
2
j
−
1
127
51
nn0zd
⊢
j
∈
ℕ
→
2
∈
ℤ
128
2nn
⊢
2
∈
ℕ
129
128
a1i
⊢
j
∈
ℕ
→
2
∈
ℕ
130
id
⊢
j
∈
ℕ
→
j
∈
ℕ
131
129
130
nnmulcld
⊢
j
∈
ℕ
→
2
j
∈
ℕ
132
iddvdsexp
⊢
2
∈
ℤ
∧
2
j
∈
ℕ
→
2
∥
2
2
j
133
127
131
132
syl2anc
⊢
j
∈
ℕ
→
2
∥
2
2
j
134
133
notnotd
⊢
j
∈
ℕ
→
¬
¬
2
∥
2
2
j
135
55
nn0zd
⊢
j
∈
ℕ
→
2
2
j
∈
ℤ
136
oddm1even
⊢
2
2
j
∈
ℤ
→
¬
2
∥
2
2
j
↔
2
∥
2
2
j
−
1
137
135
136
syl
⊢
j
∈
ℕ
→
¬
2
∥
2
2
j
↔
2
∥
2
2
j
−
1
138
134
137
mtbid
⊢
j
∈
ℕ
→
¬
2
∥
2
2
j
−
1
139
138
ad2antlr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
¬
2
∥
2
2
j
−
1
140
breq2
⊢
P
−
1
2
∑
k
=
0
M
−
1
P
k
=
2
2
j
−
1
→
2
∥
P
−
1
2
∑
k
=
0
M
−
1
P
k
↔
2
∥
2
2
j
−
1
141
140
notbid
⊢
P
−
1
2
∑
k
=
0
M
−
1
P
k
=
2
2
j
−
1
→
¬
2
∥
P
−
1
2
∑
k
=
0
M
−
1
P
k
↔
¬
2
∥
2
2
j
−
1
142
141
adantl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
∧
P
−
1
2
∑
k
=
0
M
−
1
P
k
=
2
2
j
−
1
→
¬
2
∥
P
−
1
2
∑
k
=
0
M
−
1
P
k
↔
¬
2
∥
2
2
j
−
1
143
fzfid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
0
…
M
−
1
∈
Fin
144
112
ad4ant14
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
∧
k
∈
0
…
M
−
1
→
P
k
∈
ℤ
145
elnn0
⊢
k
∈
ℕ
0
↔
k
∈
ℕ
∨
k
=
0
146
eldifsn
⊢
P
∈
ℙ
∖
2
↔
P
∈
ℙ
∧
P
≠
2
147
simpr
⊢
P
∈
ℙ
∧
P
≠
2
→
P
≠
2
148
147
necomd
⊢
P
∈
ℙ
∧
P
≠
2
→
2
≠
P
149
146
148
sylbi
⊢
P
∈
ℙ
∖
2
→
2
≠
P
150
149
adantl
⊢
k
∈
ℕ
∧
P
∈
ℙ
∖
2
→
2
≠
P
151
150
neneqd
⊢
k
∈
ℕ
∧
P
∈
ℙ
∖
2
→
¬
2
=
P
152
2prm
⊢
2
∈
ℙ
153
11
adantl
⊢
k
∈
ℕ
∧
P
∈
ℙ
∖
2
→
P
∈
ℙ
154
simpl
⊢
k
∈
ℕ
∧
P
∈
ℙ
∖
2
→
k
∈
ℕ
155
prmdvdsexpb
⊢
2
∈
ℙ
∧
P
∈
ℙ
∧
k
∈
ℕ
→
2
∥
P
k
↔
2
=
P
156
152
153
154
155
mp3an2i
⊢
k
∈
ℕ
∧
P
∈
ℙ
∖
2
→
2
∥
P
k
↔
2
=
P
157
151
156
mtbird
⊢
k
∈
ℕ
∧
P
∈
ℙ
∖
2
→
¬
2
∥
P
k
158
157
ex
⊢
k
∈
ℕ
→
P
∈
ℙ
∖
2
→
¬
2
∥
P
k
159
n2dvds1
⊢
¬
2
∥
1
160
oveq2
⊢
k
=
0
→
P
k
=
P
0
161
98
exp0d
⊢
P
∈
ℙ
∖
2
→
P
0
=
1
162
160
161
sylan9eq
⊢
k
=
0
∧
P
∈
ℙ
∖
2
→
P
k
=
1
163
162
breq2d
⊢
k
=
0
∧
P
∈
ℙ
∖
2
→
2
∥
P
k
↔
2
∥
1
164
159
163
mtbiri
⊢
k
=
0
∧
P
∈
ℙ
∖
2
→
¬
2
∥
P
k
165
164
ex
⊢
k
=
0
→
P
∈
ℙ
∖
2
→
¬
2
∥
P
k
166
158
165
jaoi
⊢
k
∈
ℕ
∨
k
=
0
→
P
∈
ℙ
∖
2
→
¬
2
∥
P
k
167
145
166
sylbi
⊢
k
∈
ℕ
0
→
P
∈
ℙ
∖
2
→
¬
2
∥
P
k
168
167
109
syl11
⊢
P
∈
ℙ
∖
2
→
k
∈
0
…
M
−
1
→
¬
2
∥
P
k
169
168
3ad2ant1
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
k
∈
0
…
M
−
1
→
¬
2
∥
P
k
170
169
ad2antrr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
k
∈
0
…
M
−
1
→
¬
2
∥
P
k
171
170
imp
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
∧
k
∈
0
…
M
−
1
→
¬
2
∥
P
k
172
nnm1nn0
⊢
M
∈
ℕ
→
M
−
1
∈
ℕ
0
173
hashfz0
⊢
M
−
1
∈
ℕ
0
→
0
…
M
−
1
=
M
-
1
+
1
174
172
173
syl
⊢
M
∈
ℕ
→
0
…
M
−
1
=
M
-
1
+
1
175
nncn
⊢
M
∈
ℕ
→
M
∈
ℂ
176
1cnd
⊢
M
∈
ℕ
→
1
∈
ℂ
177
175
176
npcand
⊢
M
∈
ℕ
→
M
-
1
+
1
=
M
178
174
177
eqtr2d
⊢
M
∈
ℕ
→
M
=
0
…
M
−
1
179
178
3ad2ant2
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
M
=
0
…
M
−
1
180
179
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
→
M
=
0
…
M
−
1
181
180
breq2d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
→
2
∥
M
↔
2
∥
0
…
M
−
1
182
181
biimpa
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
2
∥
0
…
M
−
1
183
143
144
171
182
evensumodd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
2
∥
∑
k
=
0
M
−
1
P
k
184
183
olcd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
2
∥
P
−
1
2
∨
2
∥
∑
k
=
0
M
−
1
P
k
185
152
a1i
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
→
2
∈
ℙ
186
oddn2prm
⊢
P
∈
ℙ
∖
2
→
¬
2
∥
P
187
oddm1d2
⊢
P
∈
ℤ
→
¬
2
∥
P
↔
P
−
1
2
∈
ℤ
188
15
187
syl
⊢
P
∈
ℙ
∖
2
→
¬
2
∥
P
↔
P
−
1
2
∈
ℤ
189
186
188
mpbid
⊢
P
∈
ℙ
∖
2
→
P
−
1
2
∈
ℤ
190
189
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
→
P
−
1
2
∈
ℤ
191
fzfid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
→
0
…
M
−
1
∈
Fin
192
14
ad2antrr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
k
∈
0
…
M
−
1
→
P
∈
ℕ
0
193
109
adantl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
k
∈
0
…
M
−
1
→
k
∈
ℕ
0
194
192
193
nn0expcld
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
k
∈
0
…
M
−
1
→
P
k
∈
ℕ
0
195
194
nn0zd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
k
∈
0
…
M
−
1
→
P
k
∈
ℤ
196
191
195
fsumzcl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
→
∑
k
=
0
M
−
1
P
k
∈
ℤ
197
185
190
196
3jca
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
→
2
∈
ℙ
∧
P
−
1
2
∈
ℤ
∧
∑
k
=
0
M
−
1
P
k
∈
ℤ
198
197
3adant3
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
2
∈
ℙ
∧
P
−
1
2
∈
ℤ
∧
∑
k
=
0
M
−
1
P
k
∈
ℤ
199
euclemma
⊢
2
∈
ℙ
∧
P
−
1
2
∈
ℤ
∧
∑
k
=
0
M
−
1
P
k
∈
ℤ
→
2
∥
P
−
1
2
∑
k
=
0
M
−
1
P
k
↔
2
∥
P
−
1
2
∨
2
∥
∑
k
=
0
M
−
1
P
k
200
198
199
syl
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
2
∥
P
−
1
2
∑
k
=
0
M
−
1
P
k
↔
2
∥
P
−
1
2
∨
2
∥
∑
k
=
0
M
−
1
P
k
201
200
ad2antrr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
2
∥
P
−
1
2
∑
k
=
0
M
−
1
P
k
↔
2
∥
P
−
1
2
∨
2
∥
∑
k
=
0
M
−
1
P
k
202
184
201
mpbird
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
2
∥
P
−
1
2
∑
k
=
0
M
−
1
P
k
203
202
pm2.24d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
¬
2
∥
P
−
1
2
∑
k
=
0
M
−
1
P
k
→
M
=
1
204
203
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
∧
P
−
1
2
∑
k
=
0
M
−
1
P
k
=
2
2
j
−
1
→
¬
2
∥
P
−
1
2
∑
k
=
0
M
−
1
P
k
→
M
=
1
205
142
204
sylbird
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
∧
P
−
1
2
∑
k
=
0
M
−
1
P
k
=
2
2
j
−
1
→
¬
2
∥
2
2
j
−
1
→
M
=
1
206
205
ex
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
−
1
2
∑
k
=
0
M
−
1
P
k
=
2
2
j
−
1
→
¬
2
∥
2
2
j
−
1
→
M
=
1
207
139
206
mpid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
−
1
2
∑
k
=
0
M
−
1
P
k
=
2
2
j
−
1
→
M
=
1
208
126
207
sylbid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
−
1
∑
k
=
0
M
−
1
P
k
2
=
2
2
j
−
1
→
M
=
1
209
123
208
sylbird
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
−
1
∑
k
=
0
M
−
1
P
k
=
2
2
2
j
−
1
→
M
=
1
210
103
209
sylbid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
P
M
−
1
=
2
2
2
j
−
1
→
M
=
1
211
96
210
sylbird
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
→
2
2
2
j
−
1
+
1
=
P
M
→
M
=
1
212
211
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
∧
2
j
+
1
=
N
→
2
2
2
j
−
1
+
1
=
P
M
→
M
=
1
213
84
212
sylbid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
∧
2
∥
M
∧
2
j
+
1
=
N
→
2
N
−
1
=
P
M
→
M
=
1
214
213
exp31
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
→
2
∥
M
→
2
j
+
1
=
N
→
2
N
−
1
=
P
M
→
M
=
1
215
214
com23
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
j
∈
ℕ
→
2
j
+
1
=
N
→
2
∥
M
→
2
N
−
1
=
P
M
→
M
=
1
216
215
rexlimdva
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
∃
j
∈
ℕ
2
j
+
1
=
N
→
2
∥
M
→
2
N
−
1
=
P
M
→
M
=
1
217
216
com34
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
∃
j
∈
ℕ
2
j
+
1
=
N
→
2
N
−
1
=
P
M
→
2
∥
M
→
M
=
1
218
217
adantr
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
N
=
1
→
∃
j
∈
ℕ
2
j
+
1
=
N
→
2
N
−
1
=
P
M
→
2
∥
M
→
M
=
1
219
45
218
sylbid
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
N
=
1
→
¬
2
∥
N
→
2
N
−
1
=
P
M
→
2
∥
M
→
M
=
1
220
219
com24
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
N
=
1
→
2
∥
M
→
2
N
−
1
=
P
M
→
¬
2
∥
N
→
M
=
1
221
220
ex
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
¬
N
=
1
→
2
∥
M
→
2
N
−
1
=
P
M
→
¬
2
∥
N
→
M
=
1
222
221
com25
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
¬
2
∥
N
→
2
∥
M
→
2
N
−
1
=
P
M
→
¬
N
=
1
→
M
=
1
223
222
impd
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
→
¬
2
∥
N
∧
2
∥
M
→
2
N
−
1
=
P
M
→
¬
N
=
1
→
M
=
1
224
223
3imp
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
N
∧
2
∥
M
∧
2
N
−
1
=
P
M
→
¬
N
=
1
→
M
=
1
225
38
224
pm2.61d
⊢
P
∈
ℙ
∖
2
∧
M
∈
ℕ
∧
N
∈
ℕ
∧
¬
2
∥
N
∧
2
∥
M
∧
2
N
−
1
=
P
M
→
M
=
1