Metamath Proof Explorer


Theorem lighneallem3

Description: Lemma 3 for lighneal . (Contributed by AV, 11-Aug-2021)

Ref Expression
Assertion lighneallem3 P2MN¬2N2M2N1=PMM=1

Proof

Step Hyp Ref Expression
1 oveq2 N=12N=21
2 2cn 2
3 exp1 221=2
4 2 3 ax-mp 21=2
5 1 4 eqtrdi N=12N=2
6 5 oveq1d N=12N1=21
7 2m1e1 21=1
8 6 7 eqtrdi N=12N1=1
9 8 adantl P2MN=12N1=1
10 9 eqeq1d P2MN=12N1=PM1=PM
11 eldifi P2P
12 prmnn PP
13 nnnn0 PP0
14 11 12 13 3syl P2P0
15 14 nn0zd P2P
16 iddvdsexp PMPPM
17 15 16 sylan P2MPPM
18 breq2 1=PMP1PPM
19 18 adantl P2M1=PMP1PPM
20 dvds1 P0P1P=1
21 14 20 syl P2P1P=1
22 eleq1 P=1P1
23 1nprm ¬1
24 23 pm2.21i 1M=1
25 22 24 syl6bi P=1PM=1
26 11 25 syl5com P2P=1M=1
27 21 26 sylbid P2P1M=1
28 27 ad2antrr P2M1=PMP1M=1
29 19 28 sylbird P2M1=PMPPMM=1
30 29 ex P2M1=PMPPMM=1
31 17 30 mpid P2M1=PMM=1
32 31 adantr P2MN=11=PMM=1
33 10 32 sylbid P2MN=12N1=PMM=1
34 33 ex P2MN=12N1=PMM=1
35 34 com23 P2M2N1=PMN=1M=1
36 35 a1d P2M¬2N2M2N1=PMN=1M=1
37 36 3adant3 P2MN¬2N2M2N1=PMN=1M=1
38 37 3imp P2MN¬2N2M2N1=PMN=1M=1
39 neqne ¬N=1N1
40 39 anim2i N¬N=1NN1
41 eluz2b3 N2NN1
42 40 41 sylibr N¬N=1N2
43 oddge22np1 N2¬2Nj2j+1=N
44 42 43 syl N¬N=1¬2Nj2j+1=N
45 44 3ad2antl3 P2MN¬N=1¬2Nj2j+1=N
46 oveq2 N=2j+12N=22j+1
47 46 oveq1d N=2j+12N1=22j+11
48 47 eqcoms 2j+1=N2N1=22j+11
49 2 a1i j2
50 2nn0 20
51 50 a1i j20
52 nnnn0 jj0
53 51 52 nn0mulcld j2j0
54 49 53 expp1d j22j+1=22j2
55 51 53 nn0expcld j22j0
56 55 nn0cnd j22j
57 56 49 mulcomd j22j2=222j
58 54 57 eqtrd j22j+1=222j
59 58 oveq1d j22j+11=222j1
60 npcan1 22j22j-1+1=22j
61 56 60 syl j22j-1+1=22j
62 61 eqcomd j22j=22j-1+1
63 62 oveq2d j222j=222j-1+1
64 peano2cnm 22j22j1
65 56 64 syl j22j1
66 1cnd j1
67 49 65 66 adddid j222j-1+1=222j1+21
68 63 67 eqtrd j222j=222j1+21
69 68 oveq1d j222j1=222j1+21-1
70 49 65 mulcld j222j1
71 ax-1cn 1
72 2 71 mulcli 21
73 72 a1i j21
74 70 73 66 addsubassd j222j1+21-1=222j1+21-1
75 2t1e2 21=2
76 75 oveq1i 211=21
77 76 7 eqtri 211=1
78 77 a1i j211=1
79 78 oveq2d j222j1+21-1=222j1+1
80 74 79 eqtrd j222j1+21-1=222j1+1
81 59 69 80 3eqtrd j22j+11=222j1+1
82 81 ad2antlr P2MNj2M22j+11=222j1+1
83 48 82 sylan9eqr P2MNj2M2j+1=N2N1=222j1+1
84 83 eqeq1d P2MNj2M2j+1=N2N1=PM222j1+1=PM
85 14 3ad2ant1 P2MNP0
86 nnnn0 MM0
87 86 3ad2ant2 P2MNM0
88 85 87 nn0expcld P2MNPM0
89 88 nn0cnd P2MNPM
90 89 adantr P2MNjPM
91 1cnd P2MNj1
92 70 adantl P2MNj222j1
93 90 91 92 3jca P2MNjPM1222j1
94 93 adantr P2MNj2MPM1222j1
95 subadd2 PM1222j1PM1=222j1222j1+1=PM
96 94 95 syl P2MNj2MPM1=222j1222j1+1=PM
97 nncn PP
98 11 12 97 3syl P2P
99 98 3ad2ant1 P2MNP
100 99 87 pwm1geoser P2MNPM1=P1k=0M1Pk
101 100 adantr P2MNjPM1=P1k=0M1Pk
102 101 eqeq1d P2MNjPM1=222j1P1k=0M1Pk=222j1
103 102 adantr P2MNj2MPM1=222j1P1k=0M1Pk=222j1
104 99 ad2antrr P2MNj2MP
105 1cnd P2MNj2M1
106 104 105 subcld P2MNj2MP1
107 fzfid P2MN0M1Fin
108 85 adantr P2MNk0M1P0
109 elfznn0 k0M1k0
110 109 adantl P2MNk0M1k0
111 108 110 nn0expcld P2MNk0M1Pk0
112 111 nn0zd P2MNk0M1Pk
113 107 112 fsumzcl P2MNk=0M1Pk
114 113 zcnd P2MNk=0M1Pk
115 114 ad2antrr P2MNj2Mk=0M1Pk
116 106 115 mulcld P2MNj2MP1k=0M1Pk
117 56 ad2antlr P2MNj2M22j
118 117 105 subcld P2MNj2M22j1
119 2rp 2+
120 119 a1i P2MNj2M2+
121 120 rpcnne0d P2MNj2M220
122 divmul2 P1k=0M1Pk22j1220P1k=0M1Pk2=22j1P1k=0M1Pk=222j1
123 116 118 121 122 syl3anc P2MNj2MP1k=0M1Pk2=22j1P1k=0M1Pk=222j1
124 div23 P1k=0M1Pk220P1k=0M1Pk2=P12k=0M1Pk
125 106 115 121 124 syl3anc P2MNj2MP1k=0M1Pk2=P12k=0M1Pk
126 125 eqeq1d P2MNj2MP1k=0M1Pk2=22j1P12k=0M1Pk=22j1
127 51 nn0zd j2
128 2nn 2
129 128 a1i j2
130 id jj
131 129 130 nnmulcld j2j
132 iddvdsexp 22j222j
133 127 131 132 syl2anc j222j
134 133 notnotd j¬¬222j
135 55 nn0zd j22j
136 oddm1even 22j¬222j222j1
137 135 136 syl j¬222j222j1
138 134 137 mtbid j¬222j1
139 138 ad2antlr P2MNj2M¬222j1
140 breq2 P12k=0M1Pk=22j12P12k=0M1Pk222j1
141 140 notbid P12k=0M1Pk=22j1¬2P12k=0M1Pk¬222j1
142 141 adantl P2MNj2MP12k=0M1Pk=22j1¬2P12k=0M1Pk¬222j1
143 fzfid P2MNj2M0M1Fin
144 112 ad4ant14 P2MNj2Mk0M1Pk
145 elnn0 k0kk=0
146 eldifsn P2PP2
147 simpr PP2P2
148 147 necomd PP22P
149 146 148 sylbi P22P
150 149 adantl kP22P
151 150 neneqd kP2¬2=P
152 2prm 2
153 11 adantl kP2P
154 simpl kP2k
155 prmdvdsexpb 2Pk2Pk2=P
156 152 153 154 155 mp3an2i kP22Pk2=P
157 151 156 mtbird kP2¬2Pk
158 157 ex kP2¬2Pk
159 n2dvds1 ¬21
160 oveq2 k=0Pk=P0
161 98 exp0d P2P0=1
162 160 161 sylan9eq k=0P2Pk=1
163 162 breq2d k=0P22Pk21
164 159 163 mtbiri k=0P2¬2Pk
165 164 ex k=0P2¬2Pk
166 158 165 jaoi kk=0P2¬2Pk
167 145 166 sylbi k0P2¬2Pk
168 167 109 syl11 P2k0M1¬2Pk
169 168 3ad2ant1 P2MNk0M1¬2Pk
170 169 ad2antrr P2MNj2Mk0M1¬2Pk
171 170 imp P2MNj2Mk0M1¬2Pk
172 nnm1nn0 MM10
173 hashfz0 M100M1=M-1+1
174 172 173 syl M0M1=M-1+1
175 nncn MM
176 1cnd M1
177 175 176 npcand MM-1+1=M
178 174 177 eqtr2d MM=0M1
179 178 3ad2ant2 P2MNM=0M1
180 179 adantr P2MNjM=0M1
181 180 breq2d P2MNj2M20M1
182 181 biimpa P2MNj2M20M1
183 143 144 171 182 evensumodd P2MNj2M2k=0M1Pk
184 183 olcd P2MNj2M2P122k=0M1Pk
185 152 a1i P2M2
186 oddn2prm P2¬2P
187 oddm1d2 P¬2PP12
188 15 187 syl P2¬2PP12
189 186 188 mpbid P2P12
190 189 adantr P2MP12
191 fzfid P2M0M1Fin
192 14 ad2antrr P2Mk0M1P0
193 109 adantl P2Mk0M1k0
194 192 193 nn0expcld P2Mk0M1Pk0
195 194 nn0zd P2Mk0M1Pk
196 191 195 fsumzcl P2Mk=0M1Pk
197 185 190 196 3jca P2M2P12k=0M1Pk
198 197 3adant3 P2MN2P12k=0M1Pk
199 euclemma 2P12k=0M1Pk2P12k=0M1Pk2P122k=0M1Pk
200 198 199 syl P2MN2P12k=0M1Pk2P122k=0M1Pk
201 200 ad2antrr P2MNj2M2P12k=0M1Pk2P122k=0M1Pk
202 184 201 mpbird P2MNj2M2P12k=0M1Pk
203 202 pm2.24d P2MNj2M¬2P12k=0M1PkM=1
204 203 adantr P2MNj2MP12k=0M1Pk=22j1¬2P12k=0M1PkM=1
205 142 204 sylbird P2MNj2MP12k=0M1Pk=22j1¬222j1M=1
206 205 ex P2MNj2MP12k=0M1Pk=22j1¬222j1M=1
207 139 206 mpid P2MNj2MP12k=0M1Pk=22j1M=1
208 126 207 sylbid P2MNj2MP1k=0M1Pk2=22j1M=1
209 123 208 sylbird P2MNj2MP1k=0M1Pk=222j1M=1
210 103 209 sylbid P2MNj2MPM1=222j1M=1
211 96 210 sylbird P2MNj2M222j1+1=PMM=1
212 211 adantr P2MNj2M2j+1=N222j1+1=PMM=1
213 84 212 sylbid P2MNj2M2j+1=N2N1=PMM=1
214 213 exp31 P2MNj2M2j+1=N2N1=PMM=1
215 214 com23 P2MNj2j+1=N2M2N1=PMM=1
216 215 rexlimdva P2MNj2j+1=N2M2N1=PMM=1
217 216 com34 P2MNj2j+1=N2N1=PM2MM=1
218 217 adantr P2MN¬N=1j2j+1=N2N1=PM2MM=1
219 45 218 sylbid P2MN¬N=1¬2N2N1=PM2MM=1
220 219 com24 P2MN¬N=12M2N1=PM¬2NM=1
221 220 ex P2MN¬N=12M2N1=PM¬2NM=1
222 221 com25 P2MN¬2N2M2N1=PM¬N=1M=1
223 222 impd P2MN¬2N2M2N1=PM¬N=1M=1
224 223 3imp P2MN¬2N2M2N1=PM¬N=1M=1
225 38 224 pm2.61d P2MN¬2N2M2N1=PMM=1